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Abstract. In combinatorial materials discovery, one searches for new
materials with desirable properties by obtaining measurements on hun-
dreds of samples in a single high-throughput batch experiment. As man-
ual data analysis is becoming more and more impractical, there is a
growing need to develop new techniques to automatically analyze and
interpret such data. We describe a novel approach to the phase map
identification problem where we integrate domain-specific scientific back-
ground knowledge about the physical and chemical properties of the ma-
terials into an SMT reasoning framework. We evaluate the performance
of our method on realistic synthetic measurements, and we show that it
provides accurate and physically meaningful interpretations of the data,
even in the presence of artificially added noise.
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1 Introduction

In recent years, we have witnessed an unprecedented growth in data generation
rates in many fields of science [10]. For instance, in combinatorial materials
discovery, one searches for materials with new desirable properties by obtaining
measurements on hundreds of samples in a single batch experiment [7,14]. These
are referred to as ‘high-throughput’ experiments, and are common to many other
fields such as molecular biology or astronomy, where there is a need to optimize
the data throughput of high-cost equipment [2]. As manual data analysis is
becoming more and more impractical, there is a growing need to develop new
techniques to automatically analyze and interpret such vast amount of data for
important trends and results. Modern statistical machine learning and data-
mining approaches have been quite effective in extracting relevant information
from the ever increasing streams of raw digital data. However, in scientific data
analysis, there is a large amount of rather complex domain-specific background
knowledge that needs to be taken into account, such as the physical and chemical
properties of the materials in the combinatorial materials discovery domain.
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In this paper, we describe a novel approach to the phase map identification
problem, a key step towards understanding the properties of new materials cre-
ated and examined using the combinatorial materials discovery method. The
process of identifying a phase map has been traditionally carried out manu-
ally by domain-experts, but a completely automatic solution for the phase map
identification problem would open the way for even more automation in the com-
binatorial approach pipeline. Further, a scalable and reliable automatic data in-
terpretation procedure would allow us to analyze larger datasets that go beyond
the capabilities of human experts.

In our approach, we integrate domain-specific scientific background knowl-
edge about the physical and chemical properties of the materials into an SMT
reasoning framework based on linear arithmetic. The problem has a hybrid na-
ture, with continuous measurement data, discrete decision variables and combi-
natorial constraints at the same time. We show that using our novel encoding,
state-of-the-art SMT solvers can automatically analyze large synthetic datasets,
and generate interpretations that are physically meaningful and very accurate,
even in the presence of artificially added noise. Moreover, our approach scales
to realistic-sized problem instances, outperforming a previous approach based
on Constraint Programming and a set-variables encoding [11]. Further, we show
that SMT solving outperforms both Constraint Programming and Mixed Inte-
ger Programming translations of our SMT formulation. This suggests that the
improvements come from the SMT solving procedure rather than from the new
arithmetic-based encoding, opening a novel application area for SMT solving
technology beyond the traditional verification domains [4,5].

We see this work as a first step towards using automated reasoning technology
to aid the scientific discovery process. While several aspects of our method are
specific to the materials discovery application, the approach we take to scientific
data analysis is general. Given the flexibility and reasoning power of modern
day SMT solvers, we expect to see more applications of this technology to other
fields of science.

2 Combinatorial Materials Discovery

The combinatorial method is a general experimentation setting where many si-
multaneous experiments are performed and analyzed in batch at each step. This
experimental methodology is intended to speed up the scientific discovery pro-
cess, and is becoming common in a number of areas, including catalyst discovery,
drug discovery, polymer optimization, and chemical synthesis. For example, new
catalysts have been discovered 10 to 30 times faster using the combinatorial
approach rather than conventional methodology [7,14]. This is an important
research direction in the field of Computational Sustainability, for instance be-
cause new materials with improved catalytic activity can be used for fuel cell
applications [8].

In this paper, we consider a combinatorial materials discovery approach called
composition-spread, that has been recently applied with success to speed up the
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discovery of new catalysts [15]. In the composition spread approach, three metals
(or oxides) are sputtered onto a silicon wafer using guns pointed at three distinct
locations, resulting in a so-called thin film. Different locations on the silicon wafer
correspond to different concentrations of the sputtered materials, depending on
their distance from the gunpoints. During experimentation, a number of locations
(samples) on the thin film are examined using an x-ray diffraction technique,
obtaining a diffraction pattern for each sampled point that gives the intensity of
the electromagnetic waves as a function of the scattering angle of radiation. The
observed diffraction pattern is closely related to the underlying crystal structure,
which provides important insights into chemical and physical properties of the
corresponding composite material.

A key step towards understanding the chemical and physical properties of
the composite materials on a thin film is to obtain a so-called phase map, that
is used to identify regions of the silicon wafer that share the same underlying
crystal structure (see Figure 2 for an example). Intuitively, the idea is that the
different diffraction patterns observed across the thin film can all be explained
as combinations of a small number (typically, less than 6) of diffraction patterns
called basis patterns or phases. Finding the phase map corresponds to identifying
these basis patterns and their location on the silicon wafer. This is a challeng-
ing task because we only observe combinations of the basis patterns, and the
measurements are affected by noise. Furthermore, due to a fairly complicated
physical process dealing with the expansion of crystals on the lattice, basis pat-
terns can appear scaled (contracted to a smaller or larger frequency range), and
they must satisfy a number of physical constraints (for instance, basis patterns
must appear in contiguous locations on the thin film and there is a maximum
number of basis patterns that can appear in each sample diffraction pattern).

2.1 Phase Map Identification

Formally, we are given P diffraction patterns D0, · · · ,DP−1, one for each of the
P points sampled on the thin film, where each vector Di = (d0,i, · · · , dB−1,i) ∈
(R≥0)

B
represents the intensity of the electromagnetic waves for a fixed set of

B scattering angles of radiation. The sample points are embedded into a graph
G, such that there is a vertex for every point and edges connect points that are
close on the thin film (for instance, based on Delaunay triangulation). Given
a norm || · || (for instance, an L∞ norm), we want to find K basis patterns

B0, · · · ,BK−1 where Bi ∈ (R≥0)
B
, coefficients ai,j ∈ R and scaling factors

si,j ∈ R for i = 0, · · · , P − 1, j = 0, · · · ,K − 1 that minimize

P−1∑

i=0

||Di −
∑

ai,jS (Bj , si,j) || (1)

where S(·) is an operator modeling the scaling phenomena (see below), and the
coefficients ai,j must satisfy

ai,j ≥ 0 i = 0, · · · , P − 1, j = 0, · · · ,K − 1

|{j|ai,j > 0}| ≤ M i = 0, · · · , P − 1
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that is, they are non-negative and no more than M basis patterns can be used
to explain a point i. Furthermore, the subgraph induced by {i|ai,j > 0} must be
connected for j = 0, · · · ,K − 1 (so that the basis patterns appear in contiguous
locations on the thin film). The scaling operator S(·) models the potential ex-
pansion of the crystals on the lattice. Specifically, a peak appearing at scattering
angle a in the k-th basis pattern might appear respectively at scattering angles
sp,k · a and sp′,k · a at points p, p′ of the silicon wafer because of the scaling
effect. For each basis pattern k, the corresponding scaling coefficients si,k must
be continuous and monotonic as a function of the corresponding location i on
the thin film. Further, the presence of 3 or more basis patterns in the same point
prevents any significant expansion of the crystals, and therefore scalings do not
occur.

Notice that this formulation is closely related to a principal component analy-
sis (PCA) of the data, but includes additional constraints needed to ensure that
the solution is physically meaningful, such as the non-negativity of eigenvectors,
connectivity, and phase usage limitations.

Fig. 1. Left: Pictorial depiction of the problem, showing a set of sampled points on a
thin film. Each sample corresponds to a different composition, and has an associated
measured x-ray diffraction pattern. Colors correspond to different combinations of the
basis patterns α, β, γ, δ. On the right: Scaling (shifting) of the diffraction patterns as
one moves from one point to a neighboring one.

3 Prior Work

There have been several attempts to automate the phase map identification
process. Most of the solutions in the literature are based on unsupervised ma-
chine learning techniques, such as clustering and non-negative matrix factoriza-
tion [13,12]. While these approaches are quite effective at extracting information
from large amounts of noisy data, their major limitation is that it is hard to en-
force the physical constraints of the problem at the same time. As a result, the
interpretations obtained with these techniques are often not physically meaning-
ful, for instance because regions corresponding to some basis patterns are not
connected [11].
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To address these limitations, in [11] they used a Constraint Programming
approach to enforce the constraints on the phase maps, defining a new problem
called Pattern Decomposition with Scaling. They propose an encoding based on
set variables, but the main limitation of their work is that current state-of-the-art
CP solvers cannot scale to realistic size instances (e.g., with at least 40 sample
points). To overcome this limitation, the authors used a heuristic preprocessing
step based on clustering to fix the value of certain variables before attempting to
solve the problem. While the solutions they found are empirically shown to be
accurate, their strategy cannot provide any guarantee because it only explores
part of the search space.

Our approach is similar to the one proposed in [11], but in this work we in-
troduce a novel SMT encoding based on arithmetic to formulate the phase map
identification problem. The SMT formalism nicely captures the hybrid nature of
the problem, which involves discrete decision variables and continuous measure-
ment data at the same time. Furthermore, we show that the ability to reason at
the level of arithmetic operations of SMT solvers allows our approach to scale to
instances of realistic size without need for Machine Learning-based heuristics.

4 SMT-Aided Phase Map Identification

In our first attempt to model the phase map identification problem, we con-
structed an SMT-based model where we described the entire spectrum of all
the unknown basis patterns B0, · · · ,BK−1. However, this approach requires too
many variables to obtain a sufficiently fine-grained description of the diffraction
patterns, and ultimately leads to instances that cannot be solved using current
state-of-the art solvers. We therefore use the same approach presented in [11],
and we preprocess the diffraction patterns D0, · · · ,DP−1 using a peak detection
algorithm, extracting the locations of the peaks Q(p) in the x-ray diffraction
pattern of each point p (see Figure 1). This is justified by the nature of the
diffraction patterns, as constructive interference of the scattered x-rays occurs
at specific angles (thus creating peaks of intensities) that characterize the under-
lying crystal. Furthermore, matching the locations of the peaks is what human
experts do when they try to manually solve these problems.

Given the sets of observed peaks {Q(p)}P−1
p=0 extracted from the measured

diffraction patterns D0, · · · ,DP−1, our goal is to find a set of peaks {Ek}K−1
k=0 for

the K basis patterns that can explain the observed sets of peaks {Q(p)}P−1
p=0 . The

new variables {Ek}K−1
k=0 therefore replace the original variables B0, · · · ,BK−1 in

the problem described earlier in Section 2. For each peak c ∈ Q(p) we want to
have at least one peak e ∈ Ek that can explain it, i.e.

∀c ∈ Q(p)∃e ∈ Ek s.t. (ap,k > 0 ∧ |c− sp,k · e| ≤ ε)

where ε is a parameter that depends on how accurate the peak-detection algo-
rithm is. Notice that we match the location of the peak, which can be measured
accurately, but not its intensity, which can be very noisy. At the same time, we
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want to limit the number of missing peaks, i.e. peaks that should appear be-
cause they belong to some basis pattern but have not actually been measured.
Therefore, instead of optimizing the objective in equation (1), we consider an
approximation given by

P−1∑

p=0

K−1∑

k=0

�[ap,k>0]

∑

e∈Ek

�[∀c∈Q(p),|c−sp,k·e|>ε]

that gives the total number of missing peaks. All the other constraints of the
problem previously introduced are not affected and still need to be satisfied.
Note that we can avoid the use of expensive non-linear arithmetic by using
a logarithmic scale for the x-ray data, so that multiplicative scalings become
linear operations. We refer to these effects (corresponding to the scalings in the
original problem formulation) as shifts. For each point, we therefore define a set
A(p) = {log q, q ∈ Q(p)} of peak positions in log-scale and similarly we represent
the positions of the peaks of the basis patterns using the same logarithmic scale.

After a preliminary investigation where we evaluated the performance of real-
valued arithmetic, we decided to discretize the problem and use Integer variables
to represent peak locations (with a user-defined discretization step). Since the
diffraction data is measured using digital sensors, there is no actual loss of infor-
mation if we use a small enough discretization step, and it significantly improves
the efficiency of the solvers. In the resulting SMT model we therefore use a
quantifier-free linear integer arithmetic theory.

4.1 Model Parameters

Let P be the number of sampled points on the thin film. We define L as the
maximum number of peaks per point, i.e. L = maxp |Ap|. Based on the observed
patterns, we precompute an upper and lower bound emax and emin for the po-
sitions of the peaks: emax = maxp maxa∈A(p) a, emin = minp mina∈A(p) a. There
are also a number of user-defined parameters. K is the total maximum number
of basis patterns used to explain the observed diffraction patterns, while M is
the maximum number of basis patterns that can appear in any point p. ε is a
tolerance level such that two peaks within an interval of size 2ε are considered
to be overlapping. εS is a bound on the maximum allowed difference in the shifts
of neighboring locations on the thin film, while Smax is a bound on the maxi-
mum possible shift. Furthermore, the user specifies a parameter T which gives a
bound on the total number of peaks that should appear because they belong to
some basis pattern but have not actually been measured (we will refer to them
as missing peaks).

4.2 Variables

We use a set of Boolean variables

rp,k, p = 0, · · · , P − 1, k = 0, · · · ,K − 1
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where rp,k = TRUE means that phase (basis pattern) k appears in point p (i.e.,
ap,k > 0). We also have the following Integer variables:

ek,�, k = 0, · · · ,K − 1, � = 0, · · · , L− 1

Sp,k, p = 0, · · · , P − 1, k = 0, · · · ,K − 1

Ip,k, p = 0, · · · , P − 1, k = 0, · · · ,K − 1

tp, p = 0, · · · , P − 1

where ek,� represents the position of the �-th peak of the k-th basis pattern. Sp,k

represents the shift of the k-th basis pattern at point p. The variables Ip,k are
redundant and used to count the number of phases used at point p. The variables
tp represent the number of unexplained peaks at point p, i.e. the number of
missing peaks at point p. These are peaks that should appear according to the
values of {rp,k}K−1

k=0 , {ek,�}L−1
�=0 , and {Sp,k}K−1

k=0 , but are not present, i.e. they do
not belong to Q(p).

4.3 Constraints

The variables Ip,k are Integer indicators for the Boolean variables rp,k that must
satisfy

0 ≤ Ip,k ≤ 1 k = 0, · · · ,K − 1, p = 0, · · · , P − 1

rp,k ⇔ (Ip,k = 1) k = 0, · · · ,K − 1, p = 0, · · · , P − 1

Peak locations ek,� in the basis patterns are bounded by what we observe in the
x-ray diffraction pattern:

emin ≤ ek,� ≤ emax, k = 0, · · · ,K − 1, � = 0, · · · , L− 1

Shifts are bounded by the maximum allowed shift, and can be assumed to be
non-negative without loss of generality:

0 ≤ Sp,k ≤ Smax, k = 0, · · · ,K − 1, p = 0, · · · , P − 1

Every peak a ∈ A(p) appearing at point p must be explained by at least one
peak belonging to one phase k, which can appear shifted by Sp,k:

K−1∨

k=0

L−1∨

�=0

(
rp,k ∧ (|ek,� + Sp,k − a| ≤ ε)

)∀p, ∀a ∈ A(p)

Inequalities involving the absolute value of an expression of the form |e| < c
where c is a positive constant are encoded as (e < c) ∧ (e > −c).

If a phase k is chosen for point p (i.e., rp,k = TRUE), then most of the peaks
ek,0, · · · , ek,L−1 should belong to Q(p). We count the number of missing peaks
as follows:

tp =
K−1∑

k=0

L−1∑

�=0

ITE(rp,k ∧ ¬
⎛

⎝
∨

a∈A(p)

(|ek,� + Sp,k − a| ≤ ε)

⎞

⎠ , 1, 0), ∀p
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where ITE is an if-then-else expression. Here we assume that each phase contains
at least one peak, but since peaks can be overlapping (e.g., ek,� = ek,�+1) a basis
pattern is allowed to contain less than L distinct peaks.

Missing Peaks Bound. We limit the number of total missing peaks (across
all points p) with the user-defined parameter T

P−1∑

p=0

tp ≤ T

Intuitively, the smaller T is, the better an interpretation of the data.

Phase Usage. There is a bound M on the total number of phases that can be
used to explain the peaks observed at any location p:

K−1∑

k=0

Ip,k ≤ M,p = 0, · · · , P − 1

For instance, when three metals or oxides are used to obtain the thin film, we
have a ternary system, where no more than three phases can appear in each
point p, that is M = 3.

Shift Continuity. Phase shifting is a continuous process over the thin film. We
therefore have the following constraint:

|Sp,k − Sp′,k| < εS , ∀p, ∀p′ ∈ N (p)

where N (p) is the set of neighbors of p according to the connectivity graph G
(i.e., points that lie close to p on the thin film).

Shift Monotonicity. Let D = (d0, · · · , dt) where di ∈ {0, · · · , P − 1} be a se-
quence of points that lie in a straight line on the thin film. Shifting is a monotonic
process, i.e. it must satisfy the following constraint

(
t−1∧

i=0

(
Sdi,k ≥ Sdi+1,k

)
)

∨
(

t−1∧

i=0

(
Sdi,k ≤ Sdi+1,k

)
)
, k = 0, · · · ,K − 1

Since points are usually collected on a grid lattice on the silicon wafer, we enforce
shift monotonicity on the lines forming the grid.

Ternary Phases Shift. Ternary phases (where 3 basis patterns are used) are
not affected by shifting:
((

K−1∑

k=0

Ip,k = 3

)
∧

K−1∧

k=0

(rp,k ⇔ rp′,k)

)
⇒ (Sp,k = Sp′,k) , ∀p, ∀p′ ∈ N (p)

where N (p) is the set of neighbors of p.
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Connectivity Constraint. Each of the basis patterns must be connected.
Formally, for every pair of points p, p′ such that rp,k ∧ rp′,k, there must exist a
path P from p to p′ such that rj,k = TRUE for all j ∈ P. Since it would require
too many constraints, we use a lazy approach to enforce connectivity. If we find a
solution where a basis pattern k is not connected, i.e. there exists p, p′ such that
rp,k ∧ rp′,k but there is no path P with p, p′ as endpoints such that rj,k = TRUE
for all j ∈ P, then we consider the smallest cut C between p and p′ such that
rj,k = FALSE for all j ∈ C and we add a new constraint

(rp,k ∧ rp′,k) ⇒
∨

c∈C

rc,k

Symmetry Breaking. Without loss of generality, we can impose an ordering
on the peak locations within every phase k:

ek,� ≤ ek,�+1, � = 0, · · · , L− 2, k = 0, · · · ,K − 1

Furthermore, notice that the problem is symmetric with respect to permutations
of the phase indexes k = 0, · · · ,K − 1. We therefore enforce an ordering on the
way phases are assigned to points

∧K−1
k=1 (r0,k ⇒ r0,k−1)

· · ·
∧K−1

j=1

((∧Y
i=0 ¬ri,j

)
⇒ ∧K−1

k=j (rY +1,k ⇒ rY +1,k−1)
)

where we set Y = 4.

5 Experimental Results

We evaluate the performance of our approach on a benchmark set of synthetic
instances for which the ground truth is known (namely, what the true basis pat-
terns are and how they are combined to form the observed diffraction patterns).
All the systems we consider are ternary, where three metals are combined, so
that M is set to 3 in the entire experimental section. For all experiments, two
peaks are considered to be overlapping if they are within 1% of each other, and
the maximum allowed shift is 15%.

We compare our SMT-based approach with the Constraint Programming
based solution presented in [11]. Since their CP-based formulation does not scale
to realistic-sized instances, they integrate a Machine Learning based component
to simplify the problem that the CP solver needs to solve to improve scalabil-
ity. Note that by doing this they lose the completeness of the search, because
they only explore a subtree (suggested by the ML part) of the original search
space. In contrast, our approach scales to instances of realistic size (with over 40
points) without need for the ML component. Note however that if desired, the
ML heuristic component could be easily integrated with our method.
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Synthetic Data. We consider the known Al-Li-Fe system [1] previously used
in [11], represented with a ternary diagram in Figure 2. A ternary diagram is a
simplex where each point corresponds to a different concentration of the three
constituent elements, in this case Al, Li, and Fe. The composition of a point
depends on its distance from the corners. For a fixed value of the parameter P ,
synthetic instances are generated by sampling P points in the ternary diagram,
each corresponding to different concentrations of the three constituent elements.
For each point, synthetic x-ray diffraction patters are generated starting from
known diffraction patterns of the constituent phases (taken from the JCPDS
database [1]), that are combined according to the concentrations of the elements
in that point. A peak detection algorithm is then used to generate a discrete set
of peaks.

We first consider a set of instances without any noise, for which we have the
exact location of all the peaks for every sample (the maximum number of peaks
per sample is L = 12), without any outlier or missing peak. Starting from the
diffraction patterns and the corresponding peaks, we generate the corresponding
instance using the formulation described in the previous section, encoded in
the SMTLibV2 language [3]. In this case, we set K = 6, the true number of
underlying unknown basis patterns, and we try to recover a solution with T = 0
missing peaks. We also consider a set of simplified instances, where we fix some
of the six unknown basis patterns to their true values. We solved these instances
on a 3 Ghz Intel Core2Duo machine running Windows, using the SMT solvers
Z3 [6] andMathSAT5 [9]. However, MathSAT is significantly slower (for instance,
it takes over 50 minutes to solve a small instance with P = 10 points that Z3
solves in about 15 seconds) and it does not scale to larger problems. We therefore
report only times obtained with Z3.

Running Time. We compare our method with previous CP-based approach
presented in [11] on the same set of benchmark instances. The runtime for the
CP solver are taken from [11], and were obtained on a comparable 3.8 GHz
Intel Xeon machine. In Table 1a we show runtime as a function of the instance
size P and the number of basis patterns left unknown K ′ (e.g., K ′ = 3 when
the instance has been simplified by fixing three out of the six unknown basis
patterns).

As we can see from the runtimes reported in Table 1a, our approach based on
SMT and Z3 is always considerably faster, except for the smallest simplified prob-
lems where the difference is in the order of a few seconds. More importantly, our
SMT-based approach shows a significantly improved scaling behavior, and can
solve problems of realistic size with 6 unknown phases and over 40 points within
an hour. In contrast, the previous CP-based approach can only solve simplified
problems and cannot solve any problem with 6 unknown basis patterns [11].

Solving Strategy. In order to understand whether the improvement comes
from the new problem encoding (based on integer arithmetic and not on set
variables as the one in [11]) or from the SMT solving strategy, we translated
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Table 1. P is the number of sampled points. K′ is the number of basis patterns left
unknown. e is the number of peaks removed (simulating measurement errors).

(a) Running time.

Dataset Z3 (s) ILOG Solver (s)

P=10 K’=3 8 0.5
K’=6 12 timeout at 1200

P=15 K’=3 13 0.5
K’=6 20 timeout at 1200

P=18 K’=3 29 384.8
K’=6 125 timeout at 1200

P=29 K’=3 78 276
K’=6 186 timeout at 1200

P=45 K’=6 518 timeout at 1200

(b) Accuracy.

Dataset Precision (%) Recall (%)

P=10, e=0 95.8 100
P=15, e=0 96.6 100
P=18, e=0 97.2 96.6
P=28, e=0 96.1 92.8
P=45, e=0 95.8 91.6

P=15, e=1 96.1 99.6
P=15, e=2 96.3 99.3
P=15, e=3 96.7 99.5
P=15, e=4 95.3 98.9
P=15, e=4 94.8 99.7

our arithmetic-based encoding as a Constraint Satisfaction Problem and as a
Mixed Integer Program. As our SMT model combines logical constraints and
linear inequalities exclusively, a Mixed Integer Programming (MIP) approach
is particularly appealing. Indeed, one can fairly naturally translate the logical
constraints of our model, namely ‘Or’, ‘And’, ‘Not’, ‘IfThenElse’, into a sys-
tem of linear inequalities by using additional binary variables, and be left with
a MIP formulation. The ability of the MIP to handle continuous variables for
both the peak locations and the shifts, as well as to reason in terms of an ob-
jective function (e.g., the total number of missing peaks) makes it an attractive
option. Nevertheless, the translation of the logical constraints yields a high num-
ber of binary variables (e.g., over 23K binary variables for a synthetic instance
with P = 10), which contrasts with a low total number of continuous variables
(about 120 for the same instance) and thus, weakens the potential of the MIP
formulation. Empirically, none of the instances could be solved by the MIP for-
mulation within the time limit of one hour. Similarly, we were not able to solve
any of the instances (not even when simplified) obtained from translating our
SMT formulation (symmetry breaking constraints included) to a CSP using the
state-of-the-art IBM ILOG Cplex Solver within one hour. This suggests that
the improvement over CP based solutions is not achieved thanks to the differ-
ent problem encoding, but is due to the SMT solving procedure itself, which is
stronger in the reasoning part and can handle well the intricate combinatorial
constraints of the problem.

Accuracy. We evaluate the accuracy of our method by comparing the solutions
we find (i.e., the phase map given by the values of rp,k for p = 0, · · · , P − 1, k =
0, · · · ,K − 1) with the ground truth in terms of precision/recall scores, reported
in Table 1b. Precision is defined as the fraction of the number of points correctly
identified as belonging to phase k (true positives), over the total number of
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points identified as belonging to phase k (true positives + false positives). Recall
is defined as the fraction of points correctly identified as belonging to phase
k (true positives) over the true number of points belonging to phase k (true
positives + false negatives). These values are obtained by comparing with ground
truth all K! permutations of the phases we obtain, and taking the one with the
smallest number of errors (recall that the problem is symmetric with respect
to permutations of the phase indexes k). Further, the values in Table 1b are
the precision/recall scores obtained for each single phase k averaged over the
K = 6 phases. The results show that the phase maps we identify are always very
accurate, with precision and recall values always larger than 90%.

Fig. 2. Phase map for the synthetic Al-Li-Fe system with 45 sampled points, no errors.
Each of the six colored areas represents one of the basis patterns (α, β, ..., ζ) of the
ground truth, while the colored dots correspond to the solution of our SMT model.
The SMT results closely delimit each phase of the ground truth, which is quantitatively
validated by the high precision/recall score of our approach.

Robustness. To evaluate the robustness of our method to experimental noise,
we also consider another dataset from [11] where peaks are removed from the ob-
served diffraction patterns with probability proportional to the square of the in-
verse peak height, in order to simulate the fact that low-intensity peaks might not
be detected or they can be discarded by the peak detection algorithm. This situa-
tion is common for real-world instances, wheremeasurements are affected by noise.
We consider instances generated by removing exactly e peaks from the observed
diffraction patterns, and we solve them by setting the upper bound T on the num-
ber of missing peaks equal to e. In figure 3 we see the median running time as a
function of the number of missing peaks T . This is averaged over 10 instances with
P = 15 points, and 20 runs per instance, with a timeout set at 1 hour. As shown in
figure 3, the problem becomes significantly harder as we introduce missing peaks,
because the constraint on the total number of missing peaks allowed T becomes
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less and less effective at pruning the search space as T grows. However, the median
running time appears to increase linearly, and we are still able to recover a phase
map efficiently even for instances affected by noise.

In table 1b we show precision recall values for these instances affected by
noise. We see that the phase maps we identify are still very accurate even in
presence of noise, with precision/recall scores over 95%.
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Fig. 3. Median running time as a function of the bound on the total number of missing
peaks allowed T

6 Conclusions

We described a novel approach to the phase map identification problem, a key
step towards automatically understanding the properties of new materials cre-
ated and examined using the composition spread method. In our approach, we
integrate domain-specific scientific background knowledge about the physical and
chemical properties of the materials into an SMT reasoning framework based on
linear arithmetic. Using state-of-the-art SMT solvers, we are able to automati-
cally analyze large synthetic datasets, generating interpretations that are phys-
ically meaningful and very accurate, even in the presence of artificially added
noise. Moreover, we showed that our solution outperforms in terms of scalabil-
ity both Constraint Programming and Mixed Integer Programming approaches,
allowing us to solve instances of realistic size. Our experiments show a novel
application area for SMT technology, where we can exploit its reasoning power
in a hybrid setting with continuous measurement data and rather intricate com-
binatorial constraints.

As there is an ever-growing amount of data in many fields of science, the
grand challenge for computing and information science is how to provide efficient
methods for interpreting such data, a process that generally requires integration
with domain-specific scientific background knowledge. As a first step towards this
goal, in this work we demonstrated the use of automated reasoning technology to
support the scientific data analysis process in materials discovery. While several
aspects of our method are specific to the phase map identification problem,
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the approach we take for the data analysis problem is quite general. Given the
flexibility and ever-growing reasoning power of modern day SMT solvers, we
expect to see more applications of this technology to other areas of scientific
exploration that require sophisticated reasoning to interpret experimental data.
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