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Abstract. In recent years, a number of methods for solving the con-
strained non-negative matrix factorization problem have been proposed.
In this paper, we propose an efficient method for tackling the ever
increasing size of real-world problems. To this end, we propose a general
relaxation and several algorithms for enforcing constraints in a challeng-
ing application: the phase-mapping problem in materials science. Using
experimental data we show that the proposed method significantly out-
performs previous methods in terms of �2-norm error and speed.

1 Introduction

Matrix factorization is a well-known method used for data compression and
information extraction. Given a matrix A, matrix factorization is the problem of
finding two matrices W and H such that A ≈ WH. As W and H are assumed
to be low-rank, the sum of their sizes is usually much smaller than the size of A.
Further, the columns of W can be interpreted as basis components, which are
linearly combined by columns of H to reconstruct A. The matrix factorization
problem occurs in numerous fields, for example topic modeling [1], audio signal
processing [2], and crystallography [3]. While successful algorithms for classical
matrix factorization have been found, some variants of this problem are challeng-
ing. For example, merely restricting W and H to be element-wise non-negative
is known to lead to an NP-Hard problem [4], called non-negative matrix factor-
ization (NMF) [1,4]. These variants are important for many practical problems.

Moreover, many real-world problems which can be modeled by NMF also
involve domain-specific constraints. A good example is the phase-mapping prob-
lem in the field of materials discovery [5]. This problem arises when materials
scientists generate potentially novel materials by applying a physical transfor-
mation to mixtures of known materials. Individual materials are commonly char-
acterized by a variety of spectrographic techniques, like x-ray diffraction [6] and
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Raman spectroscopy [7]. Each spectrogram produced by these experiments typ-
ically corresponds to a mixture of potentially novel materials or phases, whose
individual spectrograms are unkown. The phase-mapping problem is then to
uncover these unknown phases, from which materials scientists can understand
the phase behavior of the associated materials and its relationship to other mea-
sured properties. At a high level, the problem can be framed as an NMF problem,
where the columns of A are the measured spectrograms Importantly, the matri-
ces W and H of the resulting factorization problem have to respect hard physical
constraints for the solution to be meaningful to scientists. This makes the phase-
mapping problem particularly challenging from a computational perspective.

In order to incorporate these hard constraints, recent work used mixed-
integer programming (MIP) to project the matrices W and H onto the constraint
space, after an unconstrained optimization [8] of the NMF problem [9]. Subse-
quently, W and H were re-optimized without leaving the constraint space. While
the results of this work are promising, the method still requires solving time-
consuming, hard combinatorial problems for enforcing the constraints. Other
previous approaches to this problem were purely based on combinatorial search
algorithms applied to the constraint space [5,10,11]. However, these methods are
often intractable and deteriorate with the presence of noise in the data. The goal
of this paper is to obviate the need for combinatorial optimization techniques
for the solution of this problem.

In this paper, we propose a heuristic approach that uses a polynomial-time
algorithm Projected Interleaved Agile Factor Decomposition (PIAFD)
interleaving the enforcement of essential hard-constraints, combined with a relax-
ation which allows the algorithm to move the optimization variables into the
constraint space continuously while optimizing the objective function for the
phase-mapping problem. This projection-based algorithm is designed to enforce
the three constraints which are most essential in the phase-mapping problem:
the Gibbs, Alloying and connectivity constraints. This new algorithm works well
in practice, and allows to extract accurate, constraint-satisfying solutions in a
very short time. We study the impact of the application of these algorithms on
the solution quality, as measured by different objective functions.

This paper is organized as follows. The phase-mapping problem is first
described and modeled as an associated matrix factorization problem. After an
overview of the state-of-the-art methods for this problem, we present our new
method PIAFD for enforcing the relevant constraints. Finally, PIAFD is applied
to several real-world data sets of the phase-mapping problem to demonstrate its
performance.

2 Preliminaries

The phase-mapping problem has recently drawn attention because of its great
importance to the discovery of new materials [12,13]. In their search for new
materials, scientists try to characterize novel materials with spectrographic tech-
niques, like x-ray diffraction (XRD) spectroscopy. For each sample point on an
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Fig. 1. (Left) the schematic on the left is known as a phase diagram. The sides of
the triangle correspond to proportions of the metals which are deposited on the wafer.
The corners correspond to regions where only one metal has been deposited, while
the center of the triangle corresponds to a location where all metals are deposited in
equal proportions. The legend indicates that four phases are present: α, β, γ, δ. Each
colors represents a region in which a unique phase or a unique combination of phases is
present. The graph on the right shows how the spectrograms can vary as the proportions
of the initial metals are changed. (Right) multiplicative gradient update rules. (Color
figure online)

experimental wafer, we denote by F (q) the vector of diffraction intensities as a
function of q, the scattering vector. That is, F (q) corresponds to the spectro-
gram observed at a location on the wafer, and we will refer to it as an XRD
pattern. Importantly, each location on the wafer is likely to contain mixtures
of new materials. Therefore, F (q) will be a combination of the spectrograms of
several unkown materials (i.e. phases), which are generally not observed directly.
This makes the phase-mapping problem non-trivial.

This problem is naturally formulated using a matrix A, each of whose columns
consists of a XRD pattern F (q) of length Q. If there are N sample points on the
wafer, A is of size Q×N . The algorithms of this paper are based on factorizing A
using two matrices W and H such that A ≈ WH. W stores the different phases,
while H contains the quantity of each basis pattern at each sample point.

While the non-negativity of the spectrograms puts one constraint on W and
H, several other constraints are also present. We briefly describe these additional
constraints, and current methods of enforcing them. The IAFD method [9] alter-
nates multiplicative gradient updates (Fig. 1) and constraint refinement. The
generalized Kullback-Leibler (KL) divergence between A and WH is taken to be
the objective function. The update rules above are proven to be non-decreasing,
but do not necessarily converge to a stationary point of the objective function.
Notably, [14] introduced modifications to these updates which do provably con-
verge to a stationary point.

Shifting . A common phenomenon that occurs in the XRD spectroscopy of cer-
tain materials is shifting. A basis pattern Fb(q) is shifting with a multiplicative
factor λ if the pattern Fb(λq) is present at a sample point, instead of Fb(q).
Crucially, a shifted pattern should still be recognized as the original pattern. In
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Fig. 1, the signals on the bottom right show the shifting of phase β. In order to
model this behavior, one can resample the signal F (λq) on a logarithmic scale,
so that the multiplicative shifting becomes additive. Then, a convolutive NMF
framework can be readily applied to this problem [9]. This framework allows for
multiple shifted copies of the phases. In particular, the columns of W are allowed
to shift down with a certain shifting amount m, W ↓m. Then the factorization
problem can be defined as A ≈ ∑

m W ↓mHm where Hm is of size K×N consists
of the activation coefficients of corresponding shifted phases. The exact shifting
of phase k at sample j is defined by a weighted average of different shifting
amounts λkj =

∑
m mHm

kj/
∑

m Hm
kj .

Gibbs. The Gibbs phase rule puts a limit on the number of phases which can be
observed at a sample point in a thermodynamic equilibrium. In particular, the
maximum number of different phases at a single location is equal to the number
of elements, G, which were deposited on the wafer initially. For example, on
the wafer where three different elements were deposited, the maximum number
of phases at each sample point is three. This implies that the number of non-
zero elements in each column of H should not exceed G. The IAFD algorithm
projects solutions onto the constraint space by solving a MIP for each column of
H containing a bounded maximum number of non-zero entries and minimizing
the �1 distance between the reconstructed sample point and real sample point.
However, this method introduced a time-consuming combinatorial problem to
solve, and the �1 distance used in MIP is different from the KL divergence used
in the multiplicative gradient updates when factorizing A.

Alloying . The alloying rule states that if shifting is detected at a sample point,
the Gibbs phase rule loses a degree of freedom. The number of possible phases for
this sample point is then bounded by G−1. Furthermore, the shifting parameters
λ change continuously across the wafer in the presence of alloying. Similar to the
Gibbs constraint, the IAFD algorithm repairs solutions by solving a set of MIPs.
These MIPs embed the alloying constraint and minimize the absolute distance
between the current solution and the measurement data A. Once again, a hard
combinatorial problem has to be solved and the objective function is not the
same as the one used for optimizing W and H.

Connectivity . The last constraint of the phase-mapping problem is the con-
nectivity constraint. This constraint states that the sample locations where a
given phase is present are members of a connected region. For this constraint,
the IAFD algorithm first defines a graph, using the sample point locations, and
a Delaunay triangulation [15] of these points. The triangulation gives a graph
in which neighborhood relationships are defined. For a sample j, its neighbors
constitute a set ωj . Then a search is performed to find the connected compo-
nents for each phase. Only the largest component of every phase is kept, and
its complement is zeroed out. This procedure is only applied at the end of the
algorithm.
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3 Constraint Projection for the Phase-Mapping Problem

Multiplicative updates. PIAFD is based on the multiplicative update rules
for convolutive NMF [16]. These update rules are non-decreasing, though they
might not converge to a stationary point of the objective function. Future work
will be based on the modified update rules introduced in [14] to eliminate this
possibility. In addition, a �1-penalty term on elements of H is included, to sug-
gest a sparse solution. Note that the scaling indeterminacy between W and H,
as (αW )( 1

αH) leads to the same reconstruction error for all non-zero α. If no
further adjustments were made, this property would lead the algorithm to make
the elements of H arbitrarily small to minimize the �1-penalty. In order to avoid
this behavior, a normalized version of W is used to derive the multiplicative
update rules. See [17] for details. PIAFD method alternates between multiplica-
tive update and projection onto the constraint space. The rest of this section
shows how to efficiently project onto the phase-mapping constraints.

Constraint Projection . The projection of a vector y onto a constraint space
C is often defined by the following equation:

PC(y) = arg min
x∈C

‖x − y‖2 (1)

Finding the projection of a given point onto a constraint space is often a
hard task, but there are some constraints for which efficient algorithms can
be defined [18–20]. In this section, we propose to define the projection of each
constraint.

Gibbs. First, the projection PGibbs(y) of the current solution y is the closest
point to y which satisfies the Gibbs constraint. This constraint states that no
more than G entries in each column of H can have a non-zero value. Each column
of H therefore can be projected independently. The closest point satisfying this
constraint is the closest point having less or equal to G non-zero values. This
point is composed of the G largest elements of the column. Note that the worst-
case complexity of finding the G largest component of a vector of size n can be
bounded by O(n+G log(n)). Let Sj

G be the vector containing the indexes of the
rows, of column j, larger or equal to the G-th largest element of the column. Let
α ∈ [0, 1] be a real value; let the matrix vp be defined by:

vpij=
{
1 if i ∈ Sj

G,
1 − α otherwise

(2)

Property 1. If α = 1, then the result of an element-wise multiplication of H
and vp respects the Gibbs constraint.

Property 2. If α ∈ [0, 1], then the result of an element-wise multiplication of
H and vp is closer to the solution space of the Gibbs constraint than H.

The parameter α is a relaxation parameter of the constraint. We can set
and modify it during the search for a solution. One advantage of having such a
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parameter is to not drastically modify the current solution, while performing the
gradient-based optimization. As shown in the experimental solution, this gives
us a great flexibility in practice.

Alloying . The alloying constraint is a conditional constraint. That is, it has to
be enforced only when alloying occurs in the data. Alloying occurs if at least
one of the phases at a given sample point is shifting. The following equation
determines this:

Y j =
∑

k∈[1,K],n∈ωj

Hkj × max(0, |λkj − λkn′ | − ε) (3)

If the alloying variable Y j is bigger than 0, then the jth column loses a
degree of freedom regarding the Gibbs constraint. That is, instead of G entries,
only G − 1 are allowed to be non-zero. This behaviour can be incorporated into
the vp matrix, which was previously used for enforcing the Gibbs constraint, by
modifying it as follow:

vpij=

⎧
⎨

⎩

1 if Y j = 0 ∧ i ∈ Sj
G,

1 if Y j > 0 ∧ i ∈ Sj
G−1,

1 − α otherwise
(4)

The matrix vp can be used to enforce or relax both Gibbs and alloying
constraints.

Connectivity . The existing algorithm for enforcing the connectivity constraint
set entries of H that do not belong to the largest connected component to zero.
As for the two previous constraints, we can relax the connectivity constraint by
multiplying these values by 1−α instead of 0. When α = 1, the exact constraint
is enforced. But when α ∈ (0, 1), the new point is only closer to, but not equal
to the exact projection. Thus, the constraint is not enforced, but the solution is
moved closer to the constraint space.

Let Ck be the set of column indices indicating the largest connected com-
ponent of basis k. As for the two previous constraints, we can use a similar vp
matrix:

vpij=

⎧
⎨

⎩

1 if i ∈ Ci ∧ Y j = 0 ∧ i ∈ Sj
G,

1 if i ∈ Ci ∧ Y j > 0 ∧ i ∈ Sj
G−1,

1 − α otherwise
(5)

The matrix vp is finally used to enforce or relax the Gibbs, alloying, and con-
nectivity constraints. This leads to a simple two-step update for solving the con-
strained NMF problem. Figure 2 shows the projection method and a high-level
schematic of our method. PIAFD starts with unconstrained gradient updates
and then interleaves enforcing relaxed constraints and multiplicative updates
of the matrices. In each iteration, W and H are first alternatively updated till
convergence or for a certain amount of times, whichever happens, and then the
relaxed constraints are enforced subsequently. Hard constraints are enforced at
the end of the algorithm (Fig. 2).
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Fig. 2. (Upper left) gradient step (green arrow) followed by a projection (red arrow).
Solutions updated by the gradient step might leave the constraint space. They are
dragged back to the constraint space through a projection. (Lower left) workflow of
the PIAFD method. It interleaves gradient updates and interleaves projections. (Right)
the pseudocode of PIAFD. (Color figure online)

4 Experiments

In this section, we compare our method, PIAFD, against other methods for
solving the phase-mapping problem. Namely, we compare the proposed method
against IAFD [9], CombiFD [5], and AgileFD [16]. CombiFD is one of the early,
purely combinatorial methods for solving the phase-mapping problem. It uses
MIP to encode all constraints, and updates solutions in an iterative fashion.
However, it is not very efficient, especially compared to more recent methods.
AgileFD is based on a matrix factorization framework to acquire solutions more
efficiently, but it does not encode all the constraints. IAFD refines AgileFD by
alternating multiplicative updates of the matrices and constraint projections
using a MIP.

All experiments were run on a server containing 24 nodes, where each node
contained an Intel x5650 2.67 GHZ, 48 GB of memory, and was running CentOS
7. The data sets are from real-world experiments from materials science.

Runtime . All methods were tested on 8 different datasets [21] to compare their
runtime. In these instances, the inner dimension K of W and H is 6, and G = 3.
At the beginning of the optimization procedure, α is set to 0 and the optimization
is then run to convergence. Subsequently, α is increased to 0.15, a value heuris-
tically found to provide the best reconstruction error, and finally to 1 after a
preset number (1000) of iterations is reached. Once α is equal to 1, the algo-
rithm is run to convergence yielding a solution to the constrained optimization
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Fig. 3. Runtime comparison of the different methods. The bar chart on the left shows
the runtime of CombiFD, AgileFD, IAFD, and PIAFD in seconds. The plot on the right
compares the runtime of IAFD, and PIAFD as a function of K, the inner dimension
of the matrices W and H.

problem. Figure 3 (left) shows that our new method improves on the runtime of
previous methods by at least an order of magnitude.

Fig. 4. Accuracy comparison of the different methods (CombiFD, AgileFD, IAFD, and
PIAFD). The left bar chart shows the minimal error attained for each method using
the KL-divergence as the objective function. The right bar chart is similar, just that
the �2-norm was used as the objective function.

Figure 3 (right) shows the runtime of IAFD and PIAFD as a function of K.
Since IAFD depends on MIP, it has a worst-case time complexity of O(

(
K
G

)
) for

each column of H. In other words, if G = 3, the worst-case runtime behavior
scales proportionally to K3. Therefore, IAFD does not scale well with K. In con-
trast, PIAFD scales linearly in K, as demonstrated by Fig. 3. This improvement
in the asymptotic scaling of the constraint projection is crucial for advancing
materials science, as the cutting edge of the field deals with datasets of ever
increasing size and complexity.
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Table 1. Constraint satisfaction comparison of the different methods for the alloying
and connectivity constraints. The system column denotes the particular dataset used
for each row. The entries in the alloying constraint column are percentages of the
columns of H which satisfy the constraint after the respective method has terminated.
The entries in the connectivity constraint column correspond the percentages of the
phases in W which satisfy the connectivity constraint.

System Alloying constraint Connectivity constraint

CombiFD AgileFD IAFD PIAFD CombiFD AgileFD IAFD PIAFD

(Fe-Bi-V)Ox(I) 0.44 0.90 1.00 1.00 1.00 0.17 1.00 1.00

(Fe-Bi-V)Ox(II) 0.47 0.76 1.00 1.00 1.00 0.17 1.00 1.00

(Fe-Bi-V)Ox(III) 0.87 0.98 1.00 1.00 0.83 0.00 1.00 1.00

(Zn-Sn-Si)Nx(I) 0.98 1.00 1.00 1.00 1.00 0.17 1.00 1.00

(Zn-Sn-Si)Nx(II) 0.95 0.98 1.00 1.00 1.00 0.00 1.00 1.00

(W-Bi-V)Ox 0.51 0.95 1.00 1.00 1.00 0.00 1.00 1.00

(Ag-Bi-V)Ox 0.19 0.90 1.00 1.00 0.67 0.00 1.00 1.00

(Mo-Bi-V)Ox 0.55 0.94 1.00 1.00 0.83 0.00 1.00 1.00

Accuracy . To compare the different methods in terms of accuracy, we bench-
marked all methods using two popular objective functions: the KL-divergence
and the �2-norm. Figure 4 (left) shows that PIAFD consistently finds solutions
with a KL-divergence comparable to the next best method (IAFD). If the �2-
norm is used, PIAFD significantly outperforms all other methods in terms of
accuracy, as evidenced by Fig. 4 (right).

Constraint Satisfaction . Our goal is to have solutions which satisfy the con-
straints of the phase-mapping problem. Table 1 demonstrates the ability of the
different methods to yield solutions in the constraint space. All the methods
respect the Gibbs constraint, so it is not shown in the table. Notably, both
IAFD and PIAFD satisfy all constraints. CombiFD encodes the constraints
using MIP. As the complexity of the constraints increases, it takes more time to
find a satisfactory solution. Within the maximum wall time of the server (4 h)
CombiFD fails to find a solution satisfying all the constraints but still respects
Gibbs and connectivity constraints. The solution generated by AgileFD neither
satisfy the alloying nor the connectivity constraint, due to the model’s limited
expressiveness.

5 Conclusion

This paper proposed PIAFD, a new method for solving the phase-mapping prob-
lem. using a novel algorithm for projecting solutions onto the constraint space.
Crucially, the method tends to continuously move the optimization variables
towards the constraint space, while minimizing the objective function with a
gradient-based optimization procedure. The experimental section shows that this
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new method is orders of magnitude faster than existing methods and, depending
on the choice of objective function, gives comparable or more accurate solutions.
Because of this improvement in runtime, problems of previously intractable size
become feasible. Consequently, the method has the potential of contributing to
accelerating discoveries in materials science.
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