
Crowdsourcing Backdoor Identification
for Combinatorial Optimization

Ronan Le Bras1, Richard Bernstein1

Carla P. Gomes1, Bart Selman1, and R. Bruce van Dover2
1 Computer Science Dept.

2 Materials Science and Engr. Dept.
Cornell University, Ithaca, NY

Abstract

We will show how human computation insights can
be key to identifying so-called backdoor variables
in combinatorial optimization problems. Backdoor
variables can be used to obtain dramatic speed-
ups in combinatorial search. Our approach lever-
ages the complementary strength of human input,
based on a visual identification of problem struc-
ture, crowdsourcing, and the power of combina-
torial solvers to exploit complex constraints. We
describe our work in the context of the domain of
materials discovery. The motivation for consider-
ing the materials discovery domain comes from the
fact that new materials can provide solutions for
key challenges in sustainability, e.g., in energy, new
catalysts for more efficient fuel cell technology.

1 Introduction
Over the last decade, we have seen dramatic improvements
in combinatorial solvers. State-of-the-art mixed integer pro-
gramming (MIP), satisfiability (SAT) and SAT Modulo The-
ory (SMT) solvers can handle practical problem instances
with up to several hundreds of thousands of variables and up
to a million constraints. Such dramatic scale-up has led to a
range of new applications, such as bounded-model checking
for verification, AI planning, and scheduling. The good per-
formance of current solvers can be traced back to their abil-
ity to discover and exploit hidden problem structure in the
application instances. The notion of backdoor variables pro-
vides useful insights into this phenomenon. Backdoor vari-
ables capture much of the practical complexity of problem
instances, since after setting backdoor variables, a problem
instance simplifies to a tractable subclass [Williams et al.,
2003b]. It was found that many practical problems have rela-
tively small backdoor sets, on the order of a few percent of the
total number of variables [Kilby et al., 2005; Szeider, 2006;
Dilkina et al., 2009; O’Sullivan, 2010; Fischetti and Monaci,
2011; Gaspers and Szeider, 2012].

The problem of finding a small backdoor set has been
shown to be worst-case intractable. However, in practice,
rapid restart techniques and variable selection heuristics en-
able solvers to find small backdoor sets relatively quickly

[Williams et al., 2003a; Gomes et al., 1998]. Intuitively back-
door variables represent critically constrained resources in the
original problem formulation. However, in actual problem
encodings, it has been difficult to find a clear semantic inter-
pretation of such variables [Hoffmann et al., 2007, e.g.].

In this paper, we present an application domain with an
SMT encoding, where we are able to identify useful classes
of backdoor variables in a semantically meaningful way. We
then show how by setting a subset of such variables, one can
speed up the SMT solution process by several orders of mag-
nitude. For example, we present an instance that required
46,816 seconds (13 hours) to solve without explicit backdoor
variable information. With such information, a few dozen
variables can be pre-assigned, and the SMT solver can solve
the remaining instance in 129 seconds. For other results, see
table 1.

A key issue is how to obtain information on the backdoor
set for a specific problem instance. As we will see, the re-
quired backdoor information captures certain global structure
of the problem instance. We will show how a human prob-
lem solver, familiar with the problem domain, but at a novice
level, can identify the backdoor information from a relatively
basic visual representation of a problem instance. Once such
information is provided to the SMT solver, it solves the in-
stance in 129 seconds. Essential to this process is a global
inspection of a series of visual patterns. We subsequently
show how this process can be further simplified by divid-
ing up the inspection task into a series of local patterns that
can be crowdsourced for inspection on Amazon Mechanical
Turk. The Turkers, looking at these visual patterns, have no
knowledge of the original combinatorial optimization prob-
lem in question. For the instance mentioned earlier, around
10 Turkers, inspecting, on average, 30 patterns each, provided
enough information on the backdoor set to reduce the SMT
solution time to 350 seconds (down from the original time of
13 hrs), a dramatic speed up of over two orders of magnitude.

This work complements the findings of the seminal FoldIt
project [Khatib et al., 2011], which showed how human
gamers can find good protein folds, including certain new
folds not found with fully automated methods. Our results
show that a hybrid human-computer strategy can provide yet
further speed ups, outperforming pure human and computer
strategies. In our approach, the concept of backdoor vari-
ables guides the design of such a hybrid strategy. The de-

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2840

composition of the task of finding useful backdoor variables
into a sequence of smaller “local” problems (each solvable
in about 30 seconds by non-experts) enabled us to crowd-
source the discovery process. Interestingly, this approach
also is reminiscent of some of the earliest uses of “human
computation,” where groups of individuals (mostly women)
performed many relatively small calculations that were then
put together to obtain a global overall result [McLennan and
Gainer, 2012]. Of course, those original calculations are now
trivially automated. In contrast, in our work, it is an interest-
ing research question whether certain visual processing meth-
ods combined with machine learning tools could possibly re-
place the tasks performed by the Turkers. Overall though,
it seems likely that our hybrid human-computer strategy for
combinatorial optimization will be of use in a range of com-
binatorially hard application domains.

Below we will first describe our computational sustainabil-
ity application: a challenge problem in combinatorial ma-
terials discovery. The overall goal is the analysis of high-
intensity X-ray images to search for new crystalline phases
of inorganic compounds. Given that our challenge domain
involves a real-world application, the details of the problem
and the SMT model we developed are rather involved. Our
description below is meant to provide sufficient detail for the
reader to understand the domain sufficiently well to appreci-
ate the hybrid human-computer experiments that follow.

2 Motivating Application
Combinatorial materials discovery involves the rapid, high-
throughput synthesis, measurement, and analysis of a large
number of different but structurally related materials. In com-
binatorial materials discovery, materials scientists search for
intermetallic compounds with desirable physical properties
by obtaining measurements on hundreds of samples from a
thin film composition spread. This approach has been suc-
cessfully applied for example to speed up the discovery of
new materials with improved catalytic activity for fuel cell
applications [Van Dover et al., 1998; Gregoire et al., 2010].
Determining the structure of the materials (or phase map)
formed in a composition spread is key to understanding com-
position and property relations and can potentially result in
a breakthrough discovery. In the set-up we consider in this
paper, scientists run several experiments at the Cornell High
Energy Synchrotron Source (CHESS) for about one week per
year (at an experimentation cost of about $1M) and spend the
rest of the year analyzing the data. The goal is to reduce the
processing time of much of the data interpretation task to a
timeframe of hours. Such rapid analysis will enable scientists
to dynamically optimize their experiments over the days that
they have access to the synchrotron, thereby reducing overall
experimentation time and significantly accelerating the dis-
covery cycle.

The motivation for considering the materials discovery
problem comes from the fact that new materials provide a
fundamental basis for solutions to some of the most pressing
issues in energy generation, transport, and utilization as well
as more general issues in sustainability. In many cases, long-
term solutions will depend on breakthrough innovations in

materials, such as the development of new materials for more
efficient fuel cells, solar cell arrays, or for wind turbines.

Combinatorial materials discovery, in particular the prob-
lem of ternary phase-field identification addressed in this pa-
per, provides unique computational and modeling challenges.
While statistical methods and machine learning are important
components to address this challenge, they fail to incorporate
relationships that are inherent due to the basic physics and
chemistry of the underlying materials. In fact, a successful
approach to materials discovery requires a tight integration of
statistical machine learning methods, to deal with noise and
uncertainty in the measurement data, and optimization and
inference techniques, to incorporate a rich set of constraints
arising from the underlying materials physics and chemistry.
[Ermon et al., 2012] showed that a constraint reasoning and
optimization approach, as performed by a state-of-the-art Sat-
isfiable Modulo Theory (SMT) solver, can effectively solve
small- to medium-scale synthetic instances.The challenge we
consider here is how to significantly scale up this approach,
including the significant measurement noise level present in
real-world data. In particular, our ultimate objective is to ob-
tain an analysis turn-around time of under 12 hours. This
would enable us have the analysis guide further experiments
during the time period scheduled for experimentation.

The broader underlying question that we consider is
whether human input can be used to significantly boost the
performance of combinatorial reasoning and optimization
methods. The project is close in spirit to the seminal FoldIt
project [Cooper et al., 2010] for protein folding. In FoldIt,
human computation is the main driving force, complemented
with a limited amount of local computation (e.g., “shaking”
of structures). We are proposing a much tighter integration
between our computational framework and the human com-
putation [Law and von Ahn, 2011] component. In our ap-
proach, the human input and the SMT solver are highly com-
plementary: the complex local physical constraints require a
sophisticated optimization approach, whereas the global hu-
man insights are used to guide the solver. In particular, we
will show how we can boost the performance of the SMT
solver by providing additional information from human in-
put. The task at hand, which involves the interpretation of
complex high-intensity X-ray diffraction patterns, appears to
be well-suited for a human computation approach. As we
will see, the human input provides useful global guidance to
the solver, by identifying the setting of backdoor variables in
the SMT model, critical variables that when assigned a value,
enable highly efficient constraint reasoning and inference,
leading to orders of magnitude speedups for the SMT solver.
Overall, the results show that our hybrid human-computer ap-
proach presents us with unique opportunities for tackling hard
combinatorial optimization challenges.

3 Problem Description
In the composition spread approach, a thin film is obtained
by depositing three metals onto a silicon wafer using guns
pointed at three distinct locations (see Fig. 1). Different lo-
cations (or samples) on the thin film correspond to different
concentrations of the sputtered materials, based on their dis-

2841

Figure 1: Left: Depiction of the problem, showing a set of
sampled points on a thin film. Each sample corresponds to a
different composition, and has an associated measured x-ray
diffraction pattern. Colors correspond to different combina-
tions of the basis patterns α, β, γ, δ. Right: Scaling (shifting)
of the diffraction patterns as one moves from one point to a
neighboring one.

tance to the gunpoints. X-ray diffraction (XRD) is then used
to characterize a number of samples on the thin film. For each
sample point, it provides the intensity of the electromagnetic
waves as a function of the scattering angle. The observed
diffraction pattern is closely related to the underlying crystal
structure, which provides important insights into the chem-
ical and physical properties of the corresponding composite
material.

The goal of the phase-map identification problem is to
identify regions of the thin film that share the same underly-
ing crystal structure. Intuitively, the XRD patterns observed
across the thin film can be explained as combinations of a
small set of basis patterns called phases. Finding the phase
map corresponds to identifying these phases as well as their
concentration on the thin film. The main challenge is to
model the complex crystallographic process that these phases
are subject to (such as the expansion of the lattice, which re-
sults in a ’scaling’ of the XRD pattern), while taking into ac-
count the imperfection of the silicon wafer as well as experi-
mental noise of the data.

While it is natural to study the phase-map identification
problem on the basis of full XRD curves, constructive inter-
ference of the scattered X-rays occurs, by nature, at specific
angles and creates spikes (or peaks) of intensity. In addition,
experimental noise combined with variations of the Silicon
substrate make the measured intensity of the beam unreliable.
As a result, materials scientists mostly rely on peak angles
when tackling the phase-map identification problem.

Similarly, we adopt a peak-based approach (as presented
in [Le Bras et al., 2011]) in which we use a peak detection
algorithm to extract the angles of the peaks Q(p) in the XRD
pattern of a point p. The goal is then to find a set of peaks

{Ek}K−1
k=0 , coefficients ap,k ∈ R, and scaling factors sp,k ∈ R

for K basis patterns that can explain the observed sets of

peaks {Q(p)}P−1
p=0 . The scaling factor models the potential

expansion of the crystal lattice with changing composition,
which is observed as a shift in the scattering angle at which
each diffraction peak is observed. For each peak c ∈ Q(p)

we want to have at least one peak e ∈ Ek that can explain it,
i.e. ∀c ∈ Q(p)∃e ∈ Ek s.t. (ap,k > 0 ∧ |c− sp,k · e| ≤ ε)
where ε is a parameter that depends on the accuracy of the
peak-detection algorithm. The objective is therefore to min-

imize
∑P−1

p=0

∑K−1
k=0 [ap,k>0]

∑
e∈Ek [∀c∈Q(p),|c−sp,k·e|>ε],

which corresponds to the total number of missing peaks.

Other constraints must also be met. The coefficients ap,k
must be non-negative and satisfy |{k|ap,k > 0}| ≤ M (i.e.
no more than M basis patterns can be used to explain a sam-
ple p). The subgraph induced by {p|ap,k > 0} must be con-
nected in order for the basis patterns to appear in contiguous
locations on the thin film. And for each basis pattern k, the
corresponding scaling coefficients si,k must be continuous
and monotonic as a function of the corresponding location
i on the thin film.

Note that one can avoid the use of expensive non-linear
arithmetic by using a logarithmic scale for the x-ray data, so
that multiplicative scalings become linear operations. We re-
fer to these effects (corresponding to the scalings in the orig-
inal problem formulation) as shifts. Namely, we define a set
A(p) = {log q, q ∈ Q(p)} of peak positions in log-scale and
represent the positions of the peaks of the basis patterns using
the same logarithmic scale.

4 Backdoor Identification
In this section, we first present a Satisfiability Modulo Theo-
ries (SMT) encoding of the problem, and then study the im-
pact of various variable assignments on the performance of
the approach.

As described in [Ermon et al., 2012], the phase-map iden-
tification problem can be formulated as an SMT encoding as
follows. Let P be the number of samples and L the maxi-
mum number of peaks per point, i.e. L = maxp |Ap|. An up-
per and lower bound emax and emin for the positions of the
peaks are computed based on the observed patterns. More-
over, ε represents a tolerance level such that two peaks within
an interval of size 2ε are considered to be overlapping, while
Smax is a bound on the maximum possible shift.

Variables Boolean variables rp,k, for 0 ≤ p ≤ P − 1, 0 ≤
k ≤ K − 1, indicate whether phase (basis pattern) k ap-
pears in point p (i.e., ap,k > 0). The Integer variables
ek,� ∈ [emin, emax] represents the position of the �-th peak
of the k-th basis pattern while Sp,k ∈ [−Smax, Smax] rep-
resents the shift of the k-th basis pattern at point p. The
variables Ip,k are Integer indicators for the Boolean variables
rp,k (i.e.rp,k ⇔ (Ip,k = 1)) and used to count the number
of phases involved at point p. The variables tp represent the
number of unexplained peaks at point p, i.e. the number of
missing peaks at point p. These are peaks that should ap-

pear according to {rp,k}K−1
k=0 , {ek,�}L−1

�=0 , and {Sp,k}K−1
k=0 , but

were not observed, i.e. do not belong to Q(p).

Constraints Every peak a ∈ A(p) in a point p must be
explained by at least one peak belonging to a phase k, which

2842

����
����
����
����
���	
���

����
����
���

��

�� ���� ���� ���
 ���� ��

�
��
��
��
��
�
��

���
�

����������������������������� !��"��"#�

�$!�
%��&
�#!$
'#!$

Figure 2: Improvement of the SMT solver runtime as a func-
tion of the number of pre-assigned variables, for each type
of variable. The assignment fraction for maximum peaks per
phase (Lmax) is relative to the difference between the default
and correct bounds.

can appear shifted by Sp,k:

K−1∨

k=0

L−1∨

�=0

(
rp,k ∧ (|ek,� + Sp,k − a| ≤ ε)

)∀p, ∀a ∈ A(p)

The number of missing peaks in sample p is defined as
follows:

tp =

K−1∑

k=0

L−1∑

�=0

ITE(rp,k ∧ ¬(
∨

a∈A(p)

|ek,� + Sp,k − a| ≤ ε), 1, 0),

where ITE is an if-then-else expression. Here we assume
that each phase contains at least one peak, but since peaks
can be overlapping (e.g., ek,� = ek,�+1) a basis pattern is
allowed to contain less than L distinct peaks.

The objective function is to minimize
∑P−1

p=0 tp, the num-

ber of total missing peaks across all samples. Equivalently,

we define a threshold T such that
∑P−1

p=0 tp ≤ T and search

for the lowest admissible value of T .
Finally, additional constraints on phase usage, shift conti-

nuity and monotonicity, and phase connectivity can be found
in [Ermon et al., 2012].

Next, we study the impact of various variable assignments
on the running time of the approach. To determine the effec-
tiveness of setting different types of variables, we set random
subsets of each type of variables according to their correct
values, and measure the resulting relative reduction in run-
time (Fig. 2). These experiments are based on synthetic in-
stances for which the ground truth is known, and allows us to
correctly pre-assign any arbitrary variable of the model. For
each of the 4 types of variables, we ran the solver with around
25 different levels of variable assignment sizes (from 0% to
100%), and 10 randomly-selected variable subsets. The re-
sults, as illustrated in Fig. 2, show that the ek,l variables,
which correspond to the locations of the peaks in each phase,
are the variables whose assignments trigger the best reduction
in runtime. Conversely, the Spk variables (i.e. the shifts of

the phases in the samples) exhibit the poorest improvement.
Therefore, this analysis advocates a discrepancy in the use-
fulness of any potential human input about variable values,
and suggests that the information about the peak location of
a phase is more valuable than, for example, how the phase
shifts across the thin film.

In addition, this has to be put into perspective and consider
the actual human effort required to provide such an input.
In order to determine either the maximum peaks per phase
(Lmax) or the shift values (Sp,k), one must first carefully
identify the peaks present in each phase. Furthermore, phase
presence information (rp,k) and shift values are tedious to
communicate, and difficult to decompose into multiple tasks.
Finally, some information on the maximum peaks per phase
and phase presence can be inferred from human selection of
peaks belonging to particular phases. We focus on human in-
put to set peak locations as the performance benefit exceeds
that of the other variable classes, with the intention of de-
ducing additional variable settings where possible. How to
collect this human input is the subject of the next section.

5 Human-Computation Component
To gather human computation input in order to identify the
values of backdoor variables, our approach involves the fol-
lowing steps: 1) enumerating and visualizing the sets of XRD
patterns that are likely to make the phases most apparent, 2)
identifying subsets of peaks that define partial phases, and 3)
assigning the variables according to the user input and run-
ning the SMT solver.

We compare two human computation approaches for de-
termining variable assignments, which differ in the level of
background and effort required to contribute, as well as the
scope of the human computation tasks. In the first approach,
individual problem solvers explore entire problem instances
and use this global context to provide self-contained partial
solutions for the solver. In the second method, we decom-
pose the problem into smaller human computation tasks to
be completed quickly by many contributors on the Amazon
Mechanical Turk.

Individual Problem Solver Approach Our first approach
is designed for individual problem solvers who are familiar
with the problem domain, but does not require expert knowl-
edge. The UDiscoverIt interface, depicted in Figure 3, helps
the user visualize the XRD patterns and provide insightful in-
put about the underlying basis patterns. The features and con-
trols of the interface reflect the underlying physics, includ-
ing the combination and scaling of the basis patterns (Fig. 3:
Bottom-right), and guide the user towards physically mean-
ingful partial solutions. A user proceeds as follows. First,
the user selects one or more slices (linear subsets) of XRD
patterns to analyze (Fig. 3: Top-left). Next, the user identi-
fies peaks that behave jointly among these patterns if such a
relationship is clear from the selected slice. These peaks are
assumed to belong to the same phase, and are used to build a
partial phase (Fig. 3: Top-right). Namely, with respect to the
SMT encoding, this subset of peaks will be used to initialize
the ek,l variables of the corresponding phase k. In addition,

2843

Figure 3: Snapshot of UDiscoverIt, a graphical user interface for providing human input to an SMT solver for the phase-map
identification problem.

given that this partial phase has been built up from the peaks
of a given sample p, this input allows us to infer values about
the variables rp,k and Sp,k as well.

At this point, the user is invited to submit this partial solu-
tion to the server. Then, the user proceeds iteratively, with
new slices of XRD patterns, until the expected number of
phases has been reached.

Crowdsourcing Approach The process described above
can be decomposed into simple human computation tasks
and completed quickly by many Turkers, without context or
background knowledge of the problem. For each problem in-
stance, we generate images corresponding to 12 slices using
simple geometric rules, without assuming any prior knowl-
edge about the instance. These slices include most of the
sample points, and illustrate a variety of composition gradi-
ents. A separate task is then created for each sample point
in each slice, resulting in 40-100 images per instance, includ-
ing between one and five images per sample point. In future
work, we are planning to reduce number of individual tasks
required by using measurable relationships between the XRD
patterns to predict the most informative slices.

Tasks are embedded in an interactive interface and submit-
ted to the Amazon Mechanical Turk (Fig. 4). In each task,
Turkers visually identify lines forming patterns according to
specific criteria, and click to mark them. Turkers are required
to complete a 20-minute tutorial and qualification test to learn
the features that constitute a pattern. They are not provided

Figure 4: Example of a completed Mechanical Turk task. The
three leftmost lines are marked in orange as a primary pattern,
and three more towards the right are marked in purple as sec-
ondary patterns. The others are less clear and have been left
unmarked.

2844

with an explanation of the application purpose or the mean-
ing of the patterns, which are simply treated as abstract visual
patterns. Turkers typically complete each task in less than one
minute.

Each task is assigned to five different Turkers, and 5-25 an-
swers are aggregated by sample point. For each sample point,
we enumerate a set of candidate patterns to use as partial def-
initions for phases, rank them according to criteria represent-
ing the level of agreement among submitted answers, and se-
lect the best non-conflicting patterns.

This is, however, a non-trivial process. Indeed, answers
can incorrectly include peaks from two separate phases,
which can naturally be solved with a voting mechanism. Fur-
thermore, Turkers can choose to provide answers based on
any phase present, and a majority of votes is therefore re-
quired to guarantee that all included peaks belong to the same
phase. In addition, Turkers often include only a small sub-
set of the relevant peaks, potentially with little agreement on
which peaks are included. As a result, it is likely that for the
more complex sample points, no subset of peaks will meet the
threshold for inclusion, in order to constitute a partial phase.

In the following, we describe how to aggregate the input
from the Turkers and to overcome the previously mentioned
limitations. For each sample point, we generate an edge-
weighted graph G = (V,E) where V is the set of peaks,
E is the set of all pairs of peaks (defining a complete graph),
and the weight of an edge e = (i, j) ∈ E corresponds to
the co-occurrence count of peaks i and j in the submitted an-
swers. At this point, we enumerate the unique, non-trivial
components that result from partitioning the graph when cut-
ting the edges whose weight is below a range of threshold
values. Finally, for each component we generate one candi-
date pattern based on majority vote, only taking into account
the edge weights in this component.

Next, we propose to rank these candidate patterns accord-
ing to the degree agreement in the submissions. In prac-
tice, individual tasks vary in clarity, difficulty, and number
of phases present. Turkers are expected to have the strongest
agreement on answers corresponding to the clearest phase
patterns, at the sample points where they are most prominent.
Overall, the distinct patterns exhibiting the strongest agree-
ment represent the most likely subsets of peaks in each phase.
We score each candidate pattern on the level of agreement
among the submissions, as well as the amount of information
collected. A good candidate for such a score is the normalized
sum of the ratio of internal edges to total of internal and exter-
nal edges, the ratio of internal edges to the maximum possible
internal edges, and the average degree of the induced sub-
graph. Although one might consider a different measure for
ranking the candidate patterns, this proposed score combines
the notions of internal and external graph densities, typically
defined in graph clustering [Schaeffer, 2007, e.g.].

Finally, the final aggregation step involves a human com-
putation task in which we select the highest-ranked candidate
patterns that correspond to different phases. Each subsequent
pattern in rank order is selected if and only if it is visually de-
termined to represent a distinct phase from those previously
selected. In future work, we expect to perform a unified ag-
gregation across all sample points, leveraging structure be-

tween neighboring sample points, and avoiding the need for
this manual step. Furthermore, we infer the maximum num-
ber of peaks in each phase from the number of peaks in the
sample point in which the phase is defined.

Overall, this process allows us to partially assigned the ek,l
variables with the selected candidate patterns, as well as the
maximum number of peaks Lmax in each phase, and we sub-
mit the resulting variable settings to the SMT solver.

6 Empirical Results
The instances we used to evaluate our approach are synthetic
instances, generated as described in [Ermon et al., 2012]. As
opposed to real instances for which the solution is unknown,
synthetic instances allow to validate the proposed approach.
Nevertheless, these instances are realistic in size and gener-
ated from actual physical/crystallographic models.

First, we evaluated the Mechanical Turk task accuracy us-
ing ground truth values, which can be calculated for the syn-
thetically generated instances. Overall, 16% of answers only
included a single peak, suggesting the Turkers could not con-
fidently define a clear pattern and that the images vary in pat-
tern clarity and complexity. Nevertheless, only 1% of non-
trivial answers incorrectly included peaks from two or more
different phases. In addition, 36% of answers included a
secondary pattern, which workers were instructed to include
when they were nearly as clear as the primary pattern. Out
of these answers, 10% incorrectly included peaks from the
same phase as the primary pattern. In some circumstances,
workers tended to systematically interpret a single phase as
multiple patterns. We had intended to use the secondary pat-
terns to infer the maximum number of peaks in each phase;
however, it is essential not to underestimate this value. As a
result, a more sophisticated approach would be necessary to
incorporate these answers, and we excluded them from our
analysis.

Next, we performed experiments to evaluate the reduction
in runtime resulting from the human-provided variable as-
signments. All experiments were run on a Linux (version
2.6.18) cluster where each node has an Intel Xeon Processor
X5670, with dual-CPU, hex-core @2.93GHz, 12M Cache,
48GB RAM. The SMT solver used in these experiments was
Z3 [De Moura and Bjørner, 2008].

Table 1 shows the runtime of the SMT solver on 8
instances of various sizes, with and without user input from
both human computation approaches. It shows that both
user input allow a significant improvement in runtime on
each instance, between about one to two orders of magnitude
of improvement on all instances. For example, on the D2
dataset, the running time was reduced from 13 hours down
to 2 to 6 minutes. In terms of solution time, one should
also consider the time spent by humans when completing
the tasks. In the case of the individual problem solver
approach, each instance requires on average about 5 min. In
the crowdsourcing approach, Turkers spent about 20 seconds
on each of the approximately 50 HITs per instance, for a
total of about 15 min per instance. Nonetheless, given its
simple HIT selection scheme, our method clearly collects
redundant information and could greatly benefit from a more

2845

Dataset Without user input Single user input Crowdsourced input
System P L∗ K #var #cst Time (s) Time (s) #peaks set Time (s) #peaks set

A1 36 8 4 408 2095 3502 153 15 545 6
A2 60 8 4 624 3369 17345 262 14 1178 6
B1 15 6 6 267 1009 79 28 6 4 8
C1 28 6 6 436 1864 346 83 12 63 7
C2 28 8 6 490 2131 10076 517 17 140 17
C3 28 10 6 526 2309 28170 332 17 421 20
D1 45 7 6 693 3281 18882 107 22 196 13
D2 45 8 6 711 3410 46816 129 24 350 15

Table 1: Runtime (seconds) of the SMT solver with and without user input. P is the number of sample points, L∗ is the average
number of peaks per phase, K is the number of basis patterns, #var is the number of variables and #cst is the number of
constraints.

��

���

����

�����

������

�������

�� ����� ���� ����� ���� �����

�
�	

��

�
��
�

����
��	���������
���������	
�

��
��
��
��
��
��
 �
 �

Figure 5: Runtime of the SMT solver as a function of the
number of crowd-selected peaks on each system.

sophisticated active learning approach. Further minimizing
the amount of input needed from the crowd will be the focus
of future work.

We also measure the incremental impact of the amount
of user input incorporated into the SMT solver for both ap-
proaches, as illustrated in Figs. 6 and 5. These results show
that the amount of user input has diminishing absolute re-
turns, and suggest that a minimal user input dramatically
speeds up the search.

Interestingly, the level of user input needed to reach such
performance is quite minimal with respect to the instance
size. The input corresponds to the assignments of about 20
variables, which represents barely 5% of all the variables of
the SMT encoding.

7 Conclusion
Our experiments show how human computation and crowd-
sourcing insights can be key to identifying backdoor variables
in combinatorial optimization problems, dramatically speed-
ing up the performance of combinatorial solvers. Our ap-
proach leverages the complementary strength of human in-
put, providing global insights into problem structure, and the
power of combinatorial solvers to exploit complex local con-
straints. In this work, we also show how the identification of

��

���

����

�����

������

�������

�� ����� ���� ����� ���� �����

�
�	

��

�
��
�

����
��	���������
���������	
�

��
��
��
��
��
��
 �
 �

Figure 6: Runtime of the SMT solver as a function of the
number of individual-selected peaks on each system.

backdoor variables can be translated into abstract pattern vi-
sualization tasks, with no information about the original com-
binatorial optimization problem in question, in a way that
allowed for crowdsourcing. We plan to further pursue this
line of research considering different crowdsourcing strate-
gies. We described our work in the context of the domain of
materials discovery. We believe there are many other combi-
natorial domains for which a similar approach holds promise.

Acknowledgments
We are thankful to the anonymous reviewers for their constructive

feedback. Also, we thank Stefano Ermon for his insights into the

SMT formulation, and Yexiang Xue and Bruce van Dover’s stu-

dents for providing user input. This work was supported by the Na-

tional Science Foundation (NSF Expeditions in Computing award

for Computational Sustainability, grant 0832782). The experiments

were run on an infrastructure supported by the NSF Computing re-

search infrastructure for Computational Sustainability grant (grant

1059284).

References
[Cooper et al., 2010] S. Cooper, F. Khatib, A. Treuille, J. Barbero,

J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popović, and
Foldit Players. Predicting protein structures with a multiplayer
online game. Nature, 466(7307):756–760, August 2010.

2846

[De Moura and Bjørner, 2008] L. De Moura and N. Bjørner. Z3:
An efficient smt solver. Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340, 2008.

[Dilkina et al., 2009] B. Dilkina, C. Gomes, Y. Malitsky, A. Sab-
harwal, and M. Sellmann. Backdoors to combinatorial optimiza-
tion: Feasibility and optimality. Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimiza-
tion Problems, pages 56–70, 2009.

[Ermon et al., 2012] S. Ermon, R. Le Bras, C. P. Gomes, B. Sel-
man, and R. B. van Dover. Smt-aided combinatorial materials
discovery. In Proc. of the Conference on Theory and Applica-
tions of Satisfiability Testing, SAT’12, 2012.

[Fischetti and Monaci, 2011] M. Fischetti and M. Monaci. Back-
door branching. Integer Programming and Combinatoral Opti-
mization, pages 183–191, 2011.

[Gaspers and Szeider, 2012] S. Gaspers and S. Szeider. Backdoors
to satisfaction. The Multivariate Algorithmic Revolution and Be-
yond, pages 287–317, 2012.

[Gomes et al., 1998] C.P. Gomes, B. Selman, H. Kautz, et al.
Boosting combinatorial search through randomization. In Pro-
ceedings of the National Conference on Artificial Intelligence,
pages 431–437. JOHN WILEY & SONS LTD, 1998.

[Gregoire et al., 2010] J. M. Gregoire, M. E. Tague, S. Cahen,
S. Khan, H. D. Abruna, F. J. DiSalvo, and R. B. van Dover. Im-
proved fuel cell oxidation catalysis in pt1-xtax. Chem. Mater.,
22(3):1080, 2010.

[Hoffmann et al., 2007] J. Hoffmann, C. Gomes, and B. Selman.
Structure and problem hardness: Goal asymmetry and dpll proofs
in sat-based planning. Logical Methods in Computer Science,
3(1):6, 2007.

[Khatib et al., 2011] F. Khatib, S. Cooper, M.D. Tyka, K. Xu,
I. Makedon, Z. Popović, D. Baker, and F. Players. Algorithm
discovery by protein folding game players. Proceedings of the
National Academy of Sciences, 108(47):18949–18953, 2011.

[Kilby et al., 2005] P. Kilby, J. Slaney, S. Thiébaux, and T. Walsh.
Backbones and backdoors in satisfiability. In Proceedings of the
National Conference on Artificial Intelligence, volume 20, page
1368. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2005.

[Law and von Ahn, 2011] E. Law and L. von Ahn. Human Compu-
tation. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2011.

[Le Bras et al., 2011] R. Le Bras, T. Damoulas, J. M. Gregoire,
A. Sabharwal, C. Gomes, and R. B. van Dover. Constraint reason-
ing and kernel clustering for pattern decomposition with scaling.
In CP, 2011.

[McLennan and Gainer, 2012] Sarah McLennan and Mary Gainer.
When the Computer Wore a Skirt: Langleys Computers,
19351970. NASA History Program Office News & Notes,
29(1):25–32, 2012.

[O’Sullivan, 2010] Barry O’Sullivan. Backdoors to satisfaction. tu-
torial at cp 2010. In Proceedings of the Principles and Practice
of Constraint Programming (CP), 2010.

[Schaeffer, 2007] Satu Elisa Schaeffer. Graph clustering. Computer
Science Review, 1(1):27–64, 2007.

[Szeider, 2006] S. Szeider. Backdoor sets for dll subsolvers. SAT
2005, pages 73–88, 2006.

[Van Dover et al., 1998] R. B. Van Dover, LF Schneemeyer, and
RM Fleming. Discovery of a useful thin-film dielectric using
a composition-spread approach. Nature, 392(6672):162–164,
1998.

[Williams et al., 2003a] R. Williams, C. Gomes, and B. Selman.
On the connections between backdoors, restarts, and heavy-
tailedness in combinatorial search. structure, 23:4, 2003.

[Williams et al., 2003b] R. Williams, C.P. Gomes, and B. Selman.
Backdoors to typical case complexity. In International Joint Con-
ference on Artificial Intelligence, volume 18, pages 1173–1178.
Citeseer, 2003.

2847

