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ABSTRACT: Rapid construction of phase diagrams is a
central tenet of combinatorial materials science with
accelerated materials discovery efforts often hampered by
challenges in interpreting combinatorial X-ray diffraction data
sets, which we address by developing AgileFD, an artificial
intelligence algorithm that enables rapid phase mapping from a
combinatorial library of X-ray diffraction patterns. AgileFD
models alloying-based peak shifting through a novel expansion
of convolutional nonnegative matrix factorization, which not
only improves the identification of constituent phases but also
maps their concentration and lattice parameter as a function of
composition. By incorporating Gibbs’ phase rule into the algorithm, physically meaningful phase maps are obtained with
unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is
demonstrated through investigation of the V−Mn−Nb oxide system where decomposition of eight oxide phases, including two
with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of
high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-
allowed band gap energy of MnV2O6. The open-source family of AgileFD algorithms can be implemented into a broad range of
high throughput workflows to accelerate materials discovery.
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■ INTRODUCTION
Combinatorial materials science encompasses a suite of
techniques for accelerated discovery of functional materials
and often entails the establishment of relationships between
crystal structure and materials properties.1 As a result, high-
throughput phase mapping, the generation of composition
maps of phase concentrations that serve as a proxy for the solid
state phase behavior and ultimately the phase diagram for a
given synthesis condition, is an important tool for materials
discovery, prompting the recent development of synchrotron-
based X-ray diffraction (XRD) techniques to acquire 102−104
XRD patterns per day over a composition spread library.2 More
generally, the accelerated characterization of phase diagrams in
high-order composition spaces is a foundational problem in
materials science given that many binary phase diagrams are
known but few ternary or higher-order phase diagrams have
been explored due to the requisite number of experiments.
Emboldened by the progress in previous decades in automated
XRD analysis for small molecules,3 materials scientists have
adopted a variety of techniques in the past 10 years to

automatically generate phase maps (phase concentrations as a
function of composition) from XRD patterns, as recently
summarized in a perspective article4 noting the critical need for
improved algorithms that appropriately capture the complexity
of materials phase behavior. By developing algorithms at the
forefront of artificial intelligence research, we have established a
phase mapping tool that models alloying-based shifting of peaks
in XRD patterns and incorporates physical constrains based on
Gibbs’ phase rule. The algorithm performs factor decom-
position with an elegant agility that allows users to constrain
the spectral demixing based on expert knowledge of the phase
behavior, yielding the powerful phase-mapping tool we hereby
introduce as AgileFD.
The phase mapping tools developed to date employ a variety

of intuitive approaches to the problem of formulating phase
maps from a collection of XRD patterns, which generally
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contain a mixture of phase-pure patterns. Recent efforts have
demonstrated that if an expert has sufficient knowledge of the
phase map to generate training data, in particular expert-labeled
XRD patterns for a variety of phases in the system, the trained
machine learning model can map phase behavior.5 An
interesting feature of these supervised machine learning
approaches is that phase classification is performed on each
XRD pattern sequentially, whereas the remainder of the
algorithms discussed below act on the ensemble of XRD
patterns to demix multiphase patterns through simultaneous
consideration of a wide range of phase mixtures. Clustering
XRD patterns based on their similarity6 is a powerful data
reduction tool but since XRD patterns may be clustered due to
either a common phase or a common phase mixture (i.e., when
a set of composition samples are from the same phase field in
the underlying phase diagram), the behavior of pure-clustering
techniques is sensitive to the distance metric and requires
delicate manual tuning. Initial efforts to address these issues by
using constraint programming (CP) to inject physics-based
reasoning into clustering have shown promise but have yet to
be developed into an effective phase mapping algorithm for
experimental data.7 More recently, by performing clustering in
a feature vector space that includes the XRD patterns and
sample compositions, compositional clusters can be generated
that more closely emulate phase diagrams, and this clustering
can be performed quickly enough to perform on-the-fly
analysis.8

An expert’s manual analysis of XRD patterns is most closely
emulated with a reasoning-based algorithm in which con-
stituent phases are identified by recognizing sets of peaks that
coexist in connected composition regions. By expressing the
phase mapping problem as a set of logical requirements within
a satisfiability modulo theory (SMT) reasoning framework, we
previously demonstrated automated phase mapping using
pristine, synthetic data.9 The implementation of this approach
for experimental data suffers from practical limitations due to
the computational expense for large data sets and the reliance
on accurate peak detection in every XRD pattern. As a result,
the development of scalable algorithms for (noisy) exper-
imental data has focused on factoring a collection of XRD
patterns into a small set of basis patterns (intended to represent
individual phases) and the weighting coefficients or “activation”
of the basis patterns for each experimental XRD pattern
(intended to represent the amount of each phase present in the
corresponding material). Since both XRD patterns and phase
concentrations are nonnegative, the mathematical description
of this approach is non-negative matrix factorization (NMF) in
which the XRD patterns for the composition samples are
assembled into a matrix A and the phase map solution
corresponds to identifying matrices W (whose columns are the
basis patterns) and H (which contains the activation of each
basis pattern for each sample), such that

≈ ·A W H (1)

Recent progress in solving the phase mapping problem has
thus included implementations of NMF that yield excellent
reconstruction of the XRD data set and produce phase maps
that adhere (as closely as possible) to the underlying materials
physics.
The various NMF approaches can be succinctly summarized

by considering their modeling of 3 principle properties of solid-
state phase diagrams, particularly for composition libraries
synthesized at a fixed temperature: (1) Gibbs’ Rule, in

thermodynamic equilibrium, the number of coexisting phases
in a given material can be no more than the number of
components (number of cations in the case of metal oxides) it
contains; (2) connectivity, the set of composition samples
containing a given phase must be connected in composition
space; and (3) peak shifting or alloying, the interstitial or
substitutional solution of elements within a single phase can
yield composition-dependent lattice constants that cause XRD
patterns to shift as a function of composition. While alloying-
based peak shifting can be quite complex for noncubic phases,
in the present work we only consider isotropic lattice
expansions that are manifested as uniform shifting of peaks in
XRD patterns.
Long et al.10 introduced NMF as a phase mapping strategy,

and while this approach is computationally efficient and
effective for some data sets, it does not model any of the
above properties of phase diagrams, resulting in routine
production of nonphysical and uninterpretable phase maps.
The complement to bare NMF is CombiFD,11 a powerful
factor decomposition approach in which the matrix factoriza-
tion can be performed under constraints of arbitrary complex-
ity, including the encoding of the above phase diagram
properties as hard combinatorial constraints. This approach is
analogous to the logic of the SMT algorithm described above
and is too computationally intensive for large data sets.
GRENDEL12 is an extension of NMF that was recently adapted
for phase mapping by Kusne et al.13 to enforce the Connectivity
constraint by combining NMF with a graphical model of the
composition space. GRENDEL remains computationally
efficient by iterating between NMF and clustering with an
objective function that combines the loss functions of these
subalgorithms, which requires tuning of the relative weights of
the loss functions to optimize clustering. Further development
of the algorithm is required to enforce Gibbs’ Rule, and the
reliance on NMF results in an inability to incorporate Peak
Shifting. Indeed Peak Shifting has remained a primary challenge
in phase mapping, and while powerful approaches for modeling
Peak Shifting using dynamic time warping techniques have
been proposed,7,14 they have yet to be incorporated into
scalable phase mapping algorithms.
The AgileFD phase mapping algorithm is based on

convolutional non-negative matrix factorization (cNMF),15 an
algorithm that is effective for demixing audio signals, which we
have tailored to explicity incorporate Peak Shifting in the matrix
factorization process. The key concept is to introduce multiple
copies of the basis pattern for each phase, representing multiple
alloys of the same phase but with different lattice constants.
Gibbs’ Rule is also incorporated in AgileFD-Gibbs, an extension
of AgileFD that includes constraint optimization of H using
mixed integer programming (MIP). AgileFD also enables an
expert user to inject knowledge of the phase map through
“expert constraints”. We have yet to develop an explicit
Connectivity constraint since the phase maps we have
generated to date do not substantially violate this rule due to
the efficacy of our Gibbs’ Rule enforcement. As discussed
below, our experience has been that these minor Connectivity
violations can be easily corrected by incorporating expert
feedback into the solutions.
Perhaps the most powerful aspect of AgileFD is its ability to

generate both unsupervised and expert-constrained solutions
for sizable data sets (i.e., the data matrix A containing ∼106
values corresponding to 100 s of XRD patterns each containing
1000 s of data points) in a few minutes, enabling the user to
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interact with solutions via novel data visualizers by altering the
number of basis patterns and applying expert constraints until a
satisfactory phase map is obtained. The typical analysis of a
given XRD data set proceeds by running AgileFD in
unsupervised mode to generate candidate phase mappings
that are further tailored with constraints applied by expert
analysts.
We demonstrate this process flow for a pseudoternary V−

Mn−Nb oxide library in which six primary phases are
automatically identified with basis patterns that closely match
those of known phases. Manual identification of 2 additional,
minor phases yields a slightly more refined phase map that is
used to interpret high-throughput optical spectroscopy data.
While solving the phase behavior of these previously unex-
plored compositions demonstrates the power of AgileFD, we
additionally highlight its utility in the discovery of functional
materials, in particular solar light absorbers.
Using the same V−Mn−Nb oxide library, we constructed a

composition map of band gap energy using automated UV−vis
spectroscopy16 and Tauc analysis.17 By correlating band gap
energy with the phase concentration and shift parameter from
the AgileFD-Gibbs solution, we have discovered new visible-
band gap metal oxides and alloying-based tuning of the direct-
allowed band gap energy. Such metal oxide semiconductors are
critically missing in the quest to develop efficient solar fuel
generators,18 and the combination of automated phase and
band gap mapping described herein will significantly bolster the
recent acceleration in the discovery of light absorbers for solar
energy applications and beyond.19

■ ALGORITHM AND EXPERIMENTS
AgileFD Algorithm. In this article, we highlight the

innovations of AgileFD, mainly focusing on its incorporation
of physical constraints, which drastically differs from previous-
reported approaches. For a comprehensive description of the
mathematics of AgileFD, we refer the reader to ref.20

Perhaps the most substantial advancement of AgileFD for the
phase mapping problem is the efficient modeling of Peak
Shifting, which we enable by applying a log-transformation to
the XRD patterns. Each XRD pattern can be represented as the
scattering intensity (I) as a function of q, the magnitude of the
X-ray scattering vector. The contraction of a crystal lattice due
to alloying can be considered as a scaling of the lattice
parameter (a → γa), which corresponds to the inverse scaling
of the scattering vector magnitude of each Bragg peak in the
XRD pattern (qpeak → γ−1qpeak). For the present discussion, we
consider lattice contraction (γ < 1) and note below that the
method generalizes to lattice contraction and expansion. By
performing a log-transformation of q, the peak shifting becomes
(log qpeak → log γ−1 + log qpeak), and the additive shift can be
incorporated in the matrix representation of XRD patterns
through a row-shifting operation that we define below. The
numerical values of q are not used in matrix factorization, but
the q-spacing between data points is important when modeling
shifting. A consistent model of Peak Shifting is enabled by
choosing a constant interval ρ in the log q space so that the
abscissa of the XRD patterns is a geometric series of q values

ρ ∈ − ∈ −I q n N l L( ) where [0, 1], [0, 1]n
l

min (2)

where the N XRD patterns correspond to N composition
samples and are represented as the columns of the input data
matrix A. By choosing a value of L and using the same range of

q values as the source data, these patterns are calculated by
resampling the raw XRD patterns, and we typically choose L to
be the number of data points in the raw XRD patterns, which is
2082 in the present work. A smaller value of L (larger value of
ρ) can be chosen to accelerate calculations at the expense of q
resolution. The logarithmic resampling results in decreasing q
resolution as q increases, which may prompt the use of a larger
value of L (smaller value of ρ) to retain the q resolution of the
raw data. As noted below, the value of ρ also determines the
peak shifting resolution.
In traditional NMF, the factorization produces K basis

patterns Wk, where K is the number of phases used to describe
the material system. Our innovative model to account for
shifting is enabled by using K × M patterns in W that consist of
M shifted versions of the basis pattern of each phase. Starting
with the “non-shifted” version Wk,0, the additional M − 1
shifted versions are automatically generated in each optimiza-
tion step by the row-shifting operation:
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Each shifted version corresponds to a lattice parameter
contraction by a factor of γ = ρ−m, which means that compared
to the highest (or lowest) lattice parameter realized in the
composition library, lattice contraction (or expansion) by
ρ−(M−1) (or ρ(M−1)) can be appropriately modeled by activating
the corresponding shifted version of the basis pattern. That is,
phase k is activated by N × M coefficients (Hn,k,m) in the matrix
H such that the total activation of phase k for sample n is

∑=
=

−

h Hn k
m

M

n k m,
0

1

, ,
(4)

Since multiple terms in this sum can be nonzero, multiple
shifted versions of each basis pattern can be used to create a
pseudocontinuous model of peak shifting as long as the Bragg
peaks are relatively wide (Δqpeak > ρ × qpeak), which
corresponds to using a sufficiently large value of L such that
each peak spans over several data points. The representative
shift parameter for a given sample and phase is calculated as a
weighted mean

∑ρ ρ= ⟨ ⟩ =
=

−

s H h/n k
m

H
m

M
m

n k m n k,
0

1

, , ,n k m, ,
(5)

which is the expectation value of ρm for each sample and for
each basis pattern given the corresponding distribution of
activation values.
While this construction of peak shifting is quite intuitive, the

pattern shifting cannot be directly incorporated into NMF,
which is one of the primary motivations for using cNMF as a
starting point in developing AgileFD. Candidate solutions
(typically starting with random seeding of H and W) are
improved in AgileFD through scalable update rules where the
loss function is translated into multiplicative matrix operations
that enforce gradient descent. In ref.20 we derive AgileFD’s
custom update rules for both H and W, which are derived from
a loss function based on the generalized Kullback−Leibler
divergence, an advancement that is critical for the phase
mapping problem and is generally applicable for other source
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separation problems. With these lightweight update rules, this
incorporation of Peak Shifting is vastly more efficient than the
previously proposed time warping techniques.7,14 The
asymptotic time complexity for each solution update is
O(KLMN), or more precisely Θ(KLMN). No explicit bound
exists for the number of updates needed until the completion of
the gradient descent algorithm. The calculation time increases
with decreasing convergence tolerance, requiring the user to
define a convergence criterion that appropriately balances data
reconstruction quality and convergence time, as discussed
further below.
While we have developed and continue to develop a variety

of update rules to customize the loss function and impose
various constraints, we focus on two additional types of
constraints in the present work, namely imposing additional
expert constraints and enforcing Gibbs’ Rule. Expert constraints
comprise a variety of methods in which an expert can inject
knowledge of the phase behavior, and AgileFD provides
convenient mechanisms for encoding constraints through
appropriate initialization of H and W. The multiplicative
update rules have the convenient property that if any matrix
value is zero in a candidate solution, it will remain zero
throughout AgileFD convergence, which makes incorporation
of certain constraints as simple as initializing specific matrix
elements to zero. For example, to restrict the amount of shifting
for a select basis pattern, the user can initialize the H values
corresponding to the activation of some of its shifted copies to
zero. To restrict the activation of a basis pattern to a select
composition region, the user can make its activation zero for all
other samples. A novel aspect of AgileFD is that imposing such
constraints is substantially more computationally efficient than
the (more expressive) incorporation of constraints in
combinatorial reasoning algorithms such as CombiFD.11 The
most commonly desired expert constraint for W is to predefine
the basis pattern for a phase that is known to exist in the
composition library. The corresponding basis pattern can be
incorporated in the initialization ofW, and by not updating that
portion of the matrix, the basis pattern is “frozen” in the
AgileFD solution.
Gibbs’ Rule is incorporated into AgileFD through an

extension called AgileFD-Gibbs. In terms of the hn,k values,
this rule corresponds to restricting the number of nonzero hn,k
to be no greater than the number of components in the
composition of sample n. The full Gibbs phase rule is actually
more restrictive than the one implemented in AgileFD-Gibbs,
but we find that restricting the number of coexisting phases
according to the number of components is sufficient for
practical use. The lack of enforcement of Gibbs’ Rule has
important consequences on the solution that cannot be
ameliorated ex post facto. That is, a candidate solution can
be “corrected” by zeroing the smallest hn,k values for each n
until the solution satisfies Gibbs’ Rule, but this guarantees that
the corresponding basis patterns are not optimal and that the
reconstructed data set may be “missing” Bragg peaks that are in
the source data. More generally, this simple “correction”
algorithm may not generate optimal solutions even after
additional optimization of the basis patterns. To more elegantly
and optimally enforce Gibbs’ Rule, we combine AgileFD with a
MIP algorithm that modifies a candidate solution. While W is
fixed, the MIP algorithm generates a new activation matrix by
finding the optimal K × M activation coefficients for each
sample that adhere to Gibbs Rule, and the resulting candidate
solution is then further optimized using AgileFD. The MIP

algorithm is applied to each sample independently, and since the
complexity of the MIP is bound by the number of allowed
phases in Gibbs’ Rule, which is 3 in the present work and
generally a small number, the most prominent scaling for the
execution of the MIP step is its proportionality to N, the
number of samples. It is worth noting the similarity between
the utility of the MIP algorithm and the expert constraints
noted above; the MIP-modified solution assigns the appropriate
number of values in H to zero such that subsequent candidate
solutions adhere to Gibbs’ Rule.
With an AgileFD or AgileFD-Gibbs solution in hand, the

collection of basis patterns Wk,0 and the composition maps of
hn,k and sn,k provide an intuitive visualization of the phase
behavior. Further quantification of phase concentrations and
lattice parameters require identification of the crystal structure
for each basis pattern, which was performed in the present work
through search and match with the entries in the International
Center for Diffraction Data (ICDD) database using DIF-
FRAC.SUITE EVA software. Using relative intensity ratios and
tabulated Bragg peaks from the ICDD entries (see Supporting
Information for details), the relative total scattering intensity
per mole of metal (ϑk) was calculated for each phase, enabling
the relative molar activation of each phase in each sample to be
calculated as

∫=
ϑ

P
h

Wn k
n k

k
k

rel
,

,
,0

(6)

where the integral over the basis pattern is analogous to the
integration over the ICDD pattern. The k phase fractions for
each sample are then provided through normalization of these
relative molar activations:

∑=
=

−

P P P/n k n k
k

K

n k,
rel

,
0

1
rel

,
(7)

which is the solution to the phase map problem under the
approximation that the total relative scattering factor of each
phase matches that of the ICDD pattern and does not vary
substantially with alloy composition within the phase.
To provide a more intuitive visualization of the weighted

shift parameters, sn,k, they are converted to lattice expansion
parameters γn,k = sn,k

−1. By determining the lattice expansion
parameter γk,ICDD that corresponds to the shift of Wk,0 that best
matches the respective ICDD pattern, the relative shift of each
phase in each sample compared to its ICDD entry is the ratio of
γn,k to γk,ICDD.

Library Synthesis. The continuous composition spread of
V, Mn, and Nb was synthesized by reactive magnetron
cosputtering in the presence of O2 and Ar gas using elemental
sources arranged symmetrically with respect to the 100 mm Si/
SiO2 substrate. The deposition proceeded for about 10 h with
the RF power of the V, Mn, Nb source fixed at 150, 115, and 81
W, respectively. The spatial variation in deposition rate from
each source resulted in a continuous thin film with composition
gradient of the order of 0.5 at. % mm−1. The variation in the
deposition rates among different sources resulted in thickness
variation across the library within a factor of 2 of the center
thickness of 400 nm. The as-deposited oxide composition
library was oxidized in air at 883 K for 1 h, producing the (V−
Mn−Nb)Ox library for which oxygen composition is unknown
and samples are represented by their cation composition.

Composition and Structure Measurements and
Analysis. XRD data was acquired using a custom HiTp
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setup incorporated into the bending-magnet beamline 1−5 of
the Stanford Synchrotron Radiation Light source (SSRL) at
SLAC National Accelerator Laboratory. A detailed description
of the experiment is provided by Gregoire et al.,2a and the
characterization of the (V−Mn−Nb)Ox library employed a
monochromated 13 keV source in reflection scattering
geometry with an XRD image detector (Princeton Quad-RO
4320). Using a 1 mm2 footprint, N = 317 samples were
acquired on a square grid with 4.5 mm pitch and within a radius
of 45 mm from the center of the 100 mm-diameter library.
Diffraction images were processed into XRD patterns, In(q),
using WxDiff software21 and further processed with a custom
background subtraction algorithm using cubic splines.
The XRF measurements were performed on an EDAX Orbis

Micro-XRF system (EDAX Inc., Mahwah, NJ) with an X-ray
beam approximately 1 mm in diameter. The V K, Mn K and Nb
K XRF intensities were extracted from the Orbis software and
converted to normalized V−Mn−Nb compositions using
relative sensitivity factors calibrated at substrate center via a
separate composition measurement. The calibration composi-
tion was measured on an Oxford Instruments X-Max 80 mm2

energy dispersive X-ray spectroscopy (EDS; Oxford Instru-
ment, Concord, MA) detector on a FEI Nova NanoSEM 450
(FEI, Hillsboro, OR). The absolute composition uncertainty for
this EDS measurement is 10 at. %, and the XRF-determined
relative compositions, which enable composition-property
maps, have approximately 1 at. % resolution.4,22

Optical Characterization. Optical characterization of the
(V−Mn−Nb)Ox library was performed on a custom HiTp
diffuse reflectance (DR) instrument built to analyze light
absorber thin films on opaque substrates. The computer-
automated experiment employed a 200 W Hg(Xe) lamp
(Newport/Oriel Apex) and an integrating sphere (Ocean
Optics ISP-50-8-R-GT) fiber-coupled to a spectrometer
(Spectral Products, Inc. SM303), with further details provided
by Mitrovic at et al.16 DR spectra were acquired on a square
grid of 1521 positions with a pitch of 2.032 mm, spot size of
approximately 1 mm, and integration time of 0.025 s per
spectrum, and typically three spectra were averaged to produce
the DR spectrum for each sample. The absorption coefficient
(α) was calculated up to a factor of a spectral scattering factor,
which we approximate to be energy-independent, using the
Kubelka−Munk radiative transfer model23 which enabled
calculation of the normalized Tauc property

α ν α ν= h hTP ( ) /max(( ) )n n1/ 1/ (8)

where n is the Tauc exponent whose value is 1/2 for analysis of
direct-allowed (DA) electronic transitions. The plots of DA
Tauc property (TPDA) versus photon energy (hν) were not
only automatically generated but also automatically interpreted
using a recently developed algorithm17b that mimics expert
judgment. The algorithm either estimates the DA band gap
energy or determines that the band gap cannot be confidently
estimated from the Tauc plot, which can occur when the band
gap energy is beyond the range of the spectrometer, the sample
is not sufficiently absorbing, or the direct-allowed band gap
signature is convoluted by the presence of multiple phases with
comparable contributions to the DR signal. We note that for
discovery of photoabsorbers, indirect-allowed (IA) transitions
are of primary interest only when the IA band gap is
substantially lower than DA band gap. For the DA results
shown here, no IA band gaps were identified at energies more
than 0.3 eV below the direct-allowed gap.

The optical and XRF measurements were performed on the
same set of library samples. The XRD measurements were
performed on a coarser grid of library positions, and the
composition for each XRD sample was calculated using linear
interpolation in the Cartesian library position space. The results
of XRD analysis (γn,k and Pn,k) were interpolated to the optical
and XRF samples through linear interpolation in the ternary
composition space. The composition spread library and
compositions of the samples characterized are shown in Figure
1.

■ RESULTS AND DISCUSSION
The phase behavior of the (V−Mn−Nb)Ox library was
analyzed using AgileFD-Gibbs in unsupervised mode and
then with additional expert constraints. Manual visualization of
the XRD patterns revealed substantial Peak Shifting, prompting
our use of M = 10 shifted copies of each basis pattern, which
corresponds to a maximum lattice expansion of 1.0072 with
respect to the basis pattern with the lowest lattice constant.
Several values of K were attempted, revealing that the K = 6
solution appeared physically sound and that higher values of K
neither substantially improved the data reconstruction nor
produced basis patterns that were distinctive from those of the
K = 6 solution. A more objective determination of appropriate
values for parameters such as K and M is the subject of ongoing
research and is beyond the scope of the present work.
Using the basis patterns from the K = 6 solution, we

performed phase matching and identified the first 6 phases in
Table 1. That is, upon fixing the values of K and M, the
unsupervised AgileFD-Gibbs algorithm produced 6 basis
patterns that match those of known phases despite substantial
overlap of the basis patterns, which is a testament to the
excellent source separation enabled by the update rules and
Gibbs rule constraint. To demonstrate how the identification of
6 phases was enabled by the Peak Shifting feature of AgileFD,
we show the AgileFD M = 1 and AgileFD-Gibbs M = 10
solutions in Figure 2. With M = 1, the dimension of the
activation matrix H is equivalent to that of NMF, motivating
our labeling of this solutions as “∼NMF”, but the algorithms
are not equivalent because of both the log transformation and
gradient descent with custom update rules used in AgileFD.
While some basis patterns and their phase distributions are
similar between the AgileFD-Gibbs and ∼NMF solutions, the
lack of peak shift modeling has an important consequence in

Figure 1. White light image of the (V−Mn−Nb)Ox composition
library on 100 mm Si/SiO2 substrate is shown with elemental labels
indicating the orientation of the sputter deposition sources. The grid
of library locations for XRD (blue) and both XRF and optical
characterization (green) are shown along with an additional plot
showing the XRF-determined compositions of these points.
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the ∼NMF solution. Inspection of the k = 5 basis pattern in
Figure 2 reveals that while the AgileFD-Gibbs solution is an
excellent match to the ICDD pattern, the ∼NMF pattern is a
very poor match. Instead of separating this ICDD phase, the
data is better reconstructed in the ∼NMF solution by using 2
basis patterns (k = 2 and 5) to model the k = 2 basis pattern of
the AgileFD-Gibbs solution. The k = 2 and 5 basis patterns in
the ∼NMF solution are essentially shifted versions of each
other and activated in complementary portions of the
composition space. The ∼NMF solution fails to identify the
k = 5 phase from the AgileFD-Gibbs solution as a direct
consequence of the inability to model Peak Shifting.
Additional subtle but important difference exist between the

∼NMF and AgileFD-Gibbs solution, and perhaps the
illustrative example for the present discussion is that the

AgileFD-Gibbs solution adheres to the connectivity require-
ment much more closely than the ∼NMF solution even though
this constraint was not imposed. The enforcement of the Gibbs
rule has important implications for optimizing not only the
phase distributions but also the basis patterns. It is important to
note that the quality of the phase map solution lies in its
explanation of physically meaningful phase behavior, which
requires (at a minimum) that the basis patterns represent solid
state phases with plausible phase distributions in composition
space. Considering the reconstruction error for each sample to
be the sum of the absolute residuals (E), then with the total
intensity in the XRD pattern (T), the fractional reconstruction
accuracy can be calculated as 1 − E/T. Averaged over the
samples, the ∼NMF and AgileFD-Gibbs solutions have 73%
and 79% accuracy, respectively, but the improvements in the
AgileFD-Gibbs solution are not sufficiently represented by this
increase in reconstruction accuracy. Indeed a challenging aspect
of the phase demixing problem is that a multitude of solutions
provide similar reconstruction accuracy, requiring the incorpo-
ration of physical constraints to yield a solution that is both
accurate and physically meaningful.
The AgileFD-Gibbs solution in Figure 2 reveals that the

lattice constant for several phases varies systematically through
the composition space, a strong indicator of alloying. Upon
careful inspection of the AgileFD-Gibbs solution we also
noticed some opportunities to further improve the phase map
via expert constraints in AgileFD-Gibbs. We proceeded to
manually inspect the compositions closest to the end-member
binary oxides. For Mn oxide the AgileFD-Gibbs solution
produced 2 different Mn oxide phases (k = 0 and 5). We have
commonly observed the coexistence of these phases in Mn-
containing libraries of metal oxides due to the lack of a strong
thermodynamic differentiation under the library synthesis
conditions (Gibbs free energies of formation of −359 and
−356 kJ mol−1 per Mn atom for Mn2O3 and Mn3O4,
respectively). Since the library compositions contain substantial

Table 1. Primary Phases in the AgileFD-Gibbs Solutions for
K = 6 and 8 Along with Their ICDD Entriesa

k,
phase
index

formula unit
(crystal system)

ICDD entry
number

relative total scattering
intensity per mole of metal

(ϑk)

0 Mn2O3 (cubic) 01-071-0636 923.2
1 V2.38Nb10.7O32.7

(orthorhombic)
01-079-8393 2195.7

2 MnNb2O6
(orthorhombic)

01-072-0484 2195.2

3 Mn3V2O8
(unknown)

00-039-0091 739.226

4 MnV2O6
(monoclinic)

01-072-1837 911.8

5 Mn3O4
(tetragonal)

01-080-0382 964.5

6 NbVO5
(orthorhombic)

00-046-0046 1706.227

7 V2O5
(orthorhombic)

00-041-1426 678.0

aICDD entries are overlaid in the basis pattern plots of Figures 2 and
3. The ϑk values used to calculate phase fractions are also shown.

Figure 2. Six-phase solutions for the (V−Mn−Nb)Ox library with algorithm parameters noted in the left-hand labels. The ∼NMF solution is the
AgileFD solution with the peak shifting removed by setting M = 1. The basis patterns are plotted along with the ICDD patterns listed in Table 1.
The map of each phase is shown as a composition plot where the point size represents the phase fraction Pn,k and the color represents the relative
lattice constant compared to the respective basis pattern, which is aligned to the best-match with the ICDD pattern.
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amounts of Nb and V that may alloy into these phases, the
alloyed metal oxides may indeed coexist in thermodynamic
equilibrium in this ternary composition space. Through manual
inspection of XRD patterns containing these phases, we
confirmed that both phases are present and in fact they often
coexist. It is worth noting that without prior knowledge of the
XRD patterns of pure phases, any source separation algorithm
cannot robustly produce phase-pure basis patterns for phases
that always coexists. For the Mn oxides, AgileFD-Gibbs
provides sufficient separation of the phases that they were
identified in ICDD search and match, and we enforced
complete separation by seedingW with simulated basis patterns
obtained by convoluting the ICDD patterns with a Gaussian
peak shape (σ = 0.13 nm−1). Inspection of the most Nb-rich
samples revealed that, as suggested by Figure 2, the library
samples are far enough from the Nb end-member composition
that no Nb oxides are observed. Inspection of the V-rich
composition revealed the presence of 2 minor phases, V2O5 and
NbVO5, whose relatively weak intensity and existence in only a
small fraction of the composition samples gives their signals
little contribution to the system-wide loss function. While
AgileFD-Gibbs may factor these phases with an extended data
set that includes compositions closer to the stoichiometries of
these phases, we amended this shortcoming of the source data
by introducing and freezing a new basis pattern for both V2O5
and NbVO5. Since these phases were only observed in V-rich
compositions, we additionally seeded the corresponding values
of H with zeros for all samples with V concentration less than
0.45. The expanded K = 8 solution with expert constraints on
four phases was generated using AgileFD-Gibbs, producing the
solution shown in Figure 3.
The addition of 2 phases and expert constraints enabled

more accurate modeling of every phase, leading to slight
changes (compared to the AgileFD-Gibbs solution of Figure 2)
in the basis patterns and phase maps even for the phases that
were not constrained. The agreement between k = 1, 2, 4 and
the respective basis patterns is remarkable, and the agreement
for k = 3 is quite good but not perfect. Upon manual inspection
of samples with high activation of this phase, we believe this
basis pattern accurately models the complex phase behavior in

this composition region. It appears that the Mn3V2O8 coexists
with minor fractions of 2 polytypes of Mn2V2O7. We previously
reported24 on the coexistence of these polytypes in thin film
(V−Mn)Ox libraries and did not pursue further disambiguation
in the phase map solution since all 3 of these manganese
vanadates only appear as minor phases since the composition
samples are all beyond ∼10 at. % of the V−Mn binary line.
With the phase map of Figure 3 in hand, we turn to the

optical characterization data to investigate if the composition
library contains any metal oxide phases of interest for solar light
absorption. While the automated Tauc analysis algorithm did
not identify a DA transition for some samples, DA band gap
energies (Eg

DA) were estimated for 1329 samples and are
mapped in composition space in Figure 4. While comparisons

of the band gap data and phase map reveal a number of
interesting structure−property relationships, for the present
purposes we provide a detailed interpretation of MnV2O6,
corresponding to k = 4 in Figure 3. It is worth noting that for
mixed-phase samples, the majority phase does not necessarily
provide the majority contribution to the Tauc plot due to
possible differences in the optical absorption strength and band
gap energies of different phases. To infer which composition

Figure 3. AgileFD-Gibbs solution with K = 8, M = 10, and expert constraints applied to k = 0, 5, 6, 7. The map of each phase is shown as a
composition plot where the point size represents the phase fraction Pn,k and the color represents the relative lattice constant, as described in Figure 2.

Figure 4. Composition map of the DA band gap energy from
automated Tauc analysis is shown for 1329 composition samples.
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samples exhibit a band gap representative of MnV2O6, we show
the band gap energy as a function of MnV2O6 phase fraction in
Figure 5, in which the sample points are colored according to

the relative lattice constant from the k = 4 phase map of Figure
3. With low phase fraction, the band gap energy is most likely
due to a different phase, so inspecting the convergence of the
band gap energy as the phase fraction increases provides an
indication of the phase fraction at which MnV2O6 is providing
the major contribution to the band gap measurement. Figure 5
reveals that samples with phase fraction in excess of 0.8 exhibit
a band gap in the 1.8−2.08 range, and that the variation within
this range is correlated with the lattice parameter.
To further investigate this relationship between band gap and

lattice parameter in MnV2O6, we extract the samples with phase
purity in excess of 0.8 and visualize in Figure 6 both the original
XRD patterns and the relative lattice parameter from AgileFD-
Gibbs. This visualization provides a more detailed under-
standing of the phase behavior in this composition region. At
the lowest V concentration (composition V0.19Mn0.38Nb0.43Ox),
the lattice parameter is approximately 1.009 times larger than
the ICDD entry and as the V concentration is increased to 0.5,
the relative lattice constant systematically lowers and trends
toward 1 as the cation composition gets closer to the
Mn0.33V0.67 composition of stoichiometric MnV2O6. The
composition library does not extend to this composition, and
in the composition region noted in Figure 6, there is a phase
boundary at V concentration of 0.5 where the alloying of
MnV2O6 does not continue into more V-rich compositions and
this phase becomes mixed with NbVO5. The highlighted
composition region in Figure 6 contains phase-pure MnV2O6
(within the detectability limit of other phases) and exhibits
alloying-based peak shifting with respect to both Mn and Nb,
suggesting that the Mn concentration varies by ±4 at. % from
the phase stoichiometry and that Nb is soluble up to
approximately 25 at. %. For this noncubic crystal structure,
the lattice constant determined by AgileFD-Gibbs is an
“average” lattice constant but not necessarily the mean of the
three lattice parameters. Figure 6a shows that most peaks shift
uniformly with some indication of nonisotropic lattice
expansion that we do not model in the present work and
may provide insights into the elemental site substitutions of this
oxide alloy.
To investigate the impact of alloying on band gap energy, we

consider the samples in the composition region highlighted in
Figure 6. As shown in Figure 7, the band gap energy of these
samples spans a nearly 0.2 eV range and systematically increases

with increasing relative lattice parameter, which is highly
correlated with composition as shown in Figure 6. We note that
while the band gaps of these oxide alloys have not been
previously reported, the trend in Figure 7 is commensurate with
reported direct-allowed band gap value of 1.8−1.95 eV for
MnV2O6 (where the relative lattice parameter is 1).25 This
alloying-induced variation in the band gap energy is well-

Figure 5. DA band gap energy is plotted against the k = 4 phase
fraction from Figure 3, demonstrating that when the phase fraction of
MnV2O6 is above 0.8, the band gap value systematically varies with the
relative lattice parameter.

Figure 6. (a) For the 26 samples with phase fraction of MnV2O6 in
excess of 0.8, the series of XRD patterns (in the q-range with primary
ICDD peaks) are arranged according to the V concentration. The top
10 patterns show a small amount of NbVO5, and the bottom 16
patterns exhibit systematic shifting of the MnV2O6 peaks with respect
to V concentration. (b) The relative lattice constant for the 26 samples
is shown and the 16 samples with no NbVO5 are indicated by a gray
region. (c) The 26 samples are shown in a composition plot with end-
members V′ = V0.61Mn0.29Nb0.09Ox, Mn′ = V0.43Mn0.47Nb0.1Ox, and
Nb′ = V0.43Mn0.29Nb0.28Ox. The composition gray composition region
contains the same 16 samples as that in b. The data for each sample is
colored according to its composition in all 3 plots.

Figure 7. (a) Band gap values from the composition region containing
high phase purity MnV2O6 (see Figure 6) are plotted against the
relative lattice parameter, demonstrating alloying-based tuning of the
band gap energy. (b) Sample compositions using the same
composition-color scale revealing that among these samples, the
highest band gap energy and lattice parameters are found with the
most Nb-rich compositions. (c) Representative Tauc plots for 3
samples with line colors matching the samples’ colors in b. The band
gap energies produced by the automated Tauc algorithm are listed in
the legend.
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studied in semiconductors based on main-group elements but is
rarely observed in metal oxides, particularly in the 1.8−2.1 eV
range that is of primary interest for photoanodes in solar
hydrogen generators and other applications.18 While substantial
additional research is required to fully understand the alloying
and band gap tuning in V−Mn−Nb oxides, the results
presented in Figures 2−7 highlight the excellent performance
of the AgileFD suite of algorithms and their enabling ability to
conduct materials science research in high order composition
spaces.
Since the matrix factorization in AgileFD proceeds via

gradient descent from randomized initial matrices (other than
the matrix elements set according to expert constraints),
different randomizations may require different calculation times
to reach the convergence criterion and may yield different
solutions. It is important to ensure that a solution is “stable” by
comparing the results from several random initializations, as
was done for all solutions presented in the present work.
Solutions equivalent (within negligible variations related to
random initialization) to that of Figure 3 can be generated
using single or multithreaded processing with convergence
times of approximately 1200 and 370 s, respectively (Intel
x5690 3.46 GHZ processor), which in the multithreaded case is
approximately equally distributed among the initial matrix
factorization, the MIP solution for applying Gibbs’ Rule, and
the subsequent matrix factorization. For this publication-quality
solution, a stringent convergence criterion was used wherein
the matrix updates proceeded until the change in the loss
function dropped below 0.008%. It is worth noting that for
initial exploration of data, a typical convergence threshold of
0.05% can be used, in which case the AgileFD matrix
factorization completes in approximately 50 s for this sizable
data set with KLMN = 52.8 million matrix elements.
In closing, we note some limitations of phase mapping

techniques and algorithms that may be addressed in future
research. It is worth noting that sputter deposition is a
nonthermal synthesis technique, and even with postdeposition
annealing of a library such as that described here, deviations
from thermodynamic equilibrium may persist. As noted above,
the coexistence of Mn2O3 and Mn3O4 may be an example of
such nonequilibrium phase behavior, requiring that constraints
based on Gibbs’ phase rule must be applied with care. To
address this potential issue we routinely generate an AgileFD-
Gibbs solution with an additional allowed phase (4 coexisting
phases for ternary compositions) for comparison. Concerning
the modeling of alloying-based peak shifting, AgileFD algorithm
is somewhat limited as it is intended to track peak shifting
resulting from isotropic lattice distortions. More complex
alloying-based distortions may result in different Bragg peaks
shifting by different amounts and even in different directions.
Such peaks shifting can only be modeled in AgileFD by
splitting the pattern of a phase into subpatterns representing
sets of peaks that shift together, and through recognition that
these “sub” basis patterns are activated over the same
composition ranges, the full pattern can be reconstructed in
post processing. This approach to modeling peak shifting is not
commensurate with Gibbs’ phase rule and is not a sufficiently
general model for alloying in noncubic systems, motivating
further algorithm development. Finally, we noted above that
adherence to the connectivity constraint is a general require-
ment for meaningful solutions, which is not enforced in
AgileFD. In the V−Mn−Nb oxide system described here, we
demonstrated that the AgileFD-Gibbs algorithm sufficiently

addresses the connectivity shortcomings of the ∼NMF
algorithm, but indeed a connectivity constraint is a desirable
extension of AgileFD that will be addressed in future work. The
source data can be found in the Supporting Information and at
http://www.udiscover.it/resources/data/. The source code will
be hosted at http://www.udiscover.it/resources/software/.

■ SUMMARY
We introduce AgileFD, the first scalable phase mapping
algorithm for combinatorial XRD data that models alloying-
based peak shifting and imposes Gibbs’ phase rule. The
importance of encoding these properties of solid state phase
diagrams into a source separation algorithm is discussed using
the (V−Mn−Nb)Ox system where unsupervised mapping of six
phases is directly enabled by these capabilities of AgileFD.
Several of the 317 XRD patterns from the composition library
contain small signals from minor phases that are not amenable
to unsupervised factorization but can be modeled by AgileFD
through straightforward injection of expert knowledge. The
resulting 8-phase solution reveals alloying in ternary oxide
phases such as MnV2O6. By combining the AgileFD solution
with band gap energies obtained from automated Tauc analysis
of high throughput UV−vis spectroscopy data, we identify band
gap tuning of nearly 0.2 eV as a function of lattice parameter
and V composition in the energy range of interest for solar
applications. The identification of this family of promising solar
light absorbers was enabled through a multidisciplinary effort in
which materials-motivated advancements of computer science
techniques produced powerful new algorithms for accelerating
materials discovery.
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