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Abstract. Matrix factorization is a robust and widely adopted tech-
nique in data science, in which a given matrix is decomposed as the
product of low rank matrices. We study a challenging constrained matrix
factorization problem in materials discovery, the so-called phase mapping
problem. We introduce a novel “lazy” Iterative Agile Factor Decomposi-
tion (IAFD) approach that relaxes and postpones non-convex constraint
sets (the lazy constraints), iteratively enforcing them when violations are
detected. IAFD interleaves multiplicative gradient-based updates with
efficient modular algorithms that detect and repair constraint violations,
while still ensuring fast run times. Experimental results show that IAFD
is several orders of magnitude faster and its solutions are also in gen-
eral considerably better than previous approaches. IAFD solves a key
problem in materials discovery while also paving the way towards tack-
ling constrained matrix factorization problems in general, with broader
implications for data science.

Keywords: Constrained matrix factorization · Relaxation methods ·
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1 Introduction

Matrix factorization has become a ubiquitous technique in data analysis, with
applications in a variety of domains such as computer vision [10], topic modeling
[6], audio signal processing [11], and crystallography [12]. Often the phenomena
considered is naturally non-negative. In non-negative matrix-factorization, the
goal is to explain a non-negative signal as the product of (typically) two non-
negative low rank matrices. Nonnegative matrix factorization is known to be
NP-Hard [13], so a general algorithm for matrix factorization most likely scales
exponentially in the worst case.

We consider a challenging and central problem in materials discovery, so-
called phase-mapping, an inverse problem whose goal is to infer the materials’
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crystal structure based on X-ray sample data, see Fig. 1(Left). Phase-mapping
was shown to be NP-Hard [5]. Existing approaches to phase mapping, discussed
in the next section, do not satisfy all the problem constraints. Furthermore,
approaches that explicitly try to incorporate the main problem constraints have
prohibitive run times on typical real-world data, hours or days, while still not
producing solutions that are completely physically meaningful.

We propose a novel Interleaved Agile Factor Decomposition (IAFD)
approach that “lazily” relaxes and postpones non-convex constraint sets (the
lazy constraints), iteratively enforcing them when violations are detected, see
Fig. 1(Right). IAFD uncovers the main underlying problem structure revealed
by the sample data by rapidly performing a large number of lightweight gradient-
based moves. In order to incorporate more intricate combinatorial constraints,
the algorithm interleaves the multiplicative gradient-based updates with effi-
cient modular algorithms that detect and repair constraint violations, while still
ensuring fast run times, scaling up to large scale real-world problems. Our exper-
imental results show that IAFD is several orders of magnitude faster and its
solutions are also in general considerably better than previous approaches. Our
work provides an efficient approach to solving a central problem in materials dis-
covery, while paving the way towards tackling constrained matrix factorization
problems in general, with broader implications for data science.

2 The Phase Mapping Problem

In search of new materials a common experimental method is to deposit several
elements onto a sample wafer at different angles. The sample locations on the
wafer receive different concentrations of the elements. As a result, distinct and
potentially undiscovered materials are formed at different locations. All materials
can be characterized by a one-dimensional X-ray diffraction pattern F (q), which
can be measured at high energy accelerators. However, several phases might be
present at one sample location and the X-ray diffraction pattern at that location
then becomes a linear combination of a set of basis patterns, each corresponding
to the pattern of one pure phase. Figure 1(Left) illustrates this phenomenon.

In the mathematical model of the problem, a matrix A representing a set
of X-ray measurements on a sample wafer is obtained. Each column of A is a
vector representing the pattern F (q) obtained at one sample location, sampled
for Q fixed values of q. The phase mapping problem entails factorizing A into
the product of W and H such that A ≈ WH.

The matrix W encodes the characteristic patterns of pure phases while H
represents how much of the different phases are present at individual sample
location. A complicating factor of the phase-mapping problem is that the laws of
thermodynamics induce a set of physical constraints on the possible underlying
low rank representation. The solutions must satisfy these constraints, defined
below, and must additionally be nonnegative as the physical quantities described
by the matrices cannot be negative. Efficient methods of solving this problem
accelerates materials science and enables automatic experimentation in search
of tomorrow’s semiconductor and photvoltaic materials.
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Fig. 1. (Left) The goal of the phase mapping problem is to explain observed X-ray
diffraction patterns at multiple sample locations in terms of the underlying phases or
crystal structures of the materials. Here the X-ray diffraction patterns of sample loca-
tions on the right edge of the triangle are shown in the middle plot. The top four sample
locations only have phase α, the bottom three only have phase β, while the middle four
sample locations have both α and β. In addition, the X-ray diffraction patterns of both
phase α and β are shifting to the right. (Right) At a high level, our Interleaved Agile
Factor Decomposition (IAFD) algorithm starts with solving a relaxed problem using
the multiplicative update rules of AgileFD [14], without enforcing combinatorial con-
straints. Violations of the Gibbs’ phase rule, the alloying rule, and the connectivity
constraint in the relaxed solutions are then addressed by efficient modular algorithms,
in an interleaving manner. This procedure is iterated, creating a closed loop involving
AgileFD and the three modules.

Shifting. A phenomenon that complicates the matrix factorization is “shift-
ing”, where the X-ray patterns are changed in the sense F (q) → F (λkq), for
some real number λk that is fixed for each phase k and column in A. For exam-
ple, the X-ray patterns in Fig. 1 are shifting to the right. The problem can
be circumvented by resampling the signal uniformly on a logarithmic scale,
where multiplicative shifts becomes additive. For fixed m and k, the vector
(0, . . . , 0,W1,k, . . . ,WQ−m,k)T formed by shifting the k-th column of W down
by m entries (and filling 0 for remaining entries) describes basis pattern of phase
k shifted by an amount controlled by m. We can then allow λk to attain M
different discrete values by letting m ∈ 0, 1...M − 1. By characterizing the H
matrix with three indices, one per phase k, sample point n, and allowed discrete
value of λk m, we can now express a linear combination of shifted basis patterns
as Aqn ≈ ∑

km Wq−m,kHkmn. Since this specific formulation will be used, the
constraints of the phase mapping problem will be given in terms of Wqk and
Hkmn, however other formulations of the rules are possible [3].

Gibbs’ Phase Rule. In a setting with three elements deposited, such as in
Fig. 1, Gibbs’ phase rule [1] states that the number of phases present at each
sample location is at most three. Mathematically, it is equivalent to constraining
the number of non-zero elements in vector (

∑
m H1mn,

∑
m H2mn, . . .) for any

phase k to be no more than three. Thus, for fixed n we have ‖∑
m Hkmn‖0 ≤ 3.
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Connectivity. The connectivity rule requires that the sample points where a
specific phase is present form a continuous domain on the sample wafer. For
example, in Fig. 1, each pattern occupies a continuous region. Mathematically,
since we have a discrete set of measurements we describe the constraint via a
graph G where sample points are nodes and nearby sample points are connected
with an edge. This graph is obtained through Delauney triangulation [7] of the
sample points. A continuous domain then corresponds to a connected component
on this graph, and we require that all sample points n with phase k present, i.e.∑

m Hkmn > 0, form a connected component on G.

Alloying Rule. The shifting parameter λk for phase k may shift continuously
across the sample points as a result of so called alloying. The alloying rule states
that for points where λk is changing, Gibbs’ phase rule becomes even stricter
and requires ‖∑

m Hkmn‖0 ≤ 2. In this discrete setting we interpret λk of a
point n as

∑
m Hnkmm/

∑
m Hnkm, which can be thought of as the expectation

of m when we normalize Hkmn to a probability distribution. Two neighboring
sample points n and n′ with phase k present, which means

∑
m Hkmn > 0 and∑

m Hkmn′ > 0, are considered shifting if
∥
∥
∥
∥

∑
m Hkmnm

∑
m Hkmn

−
∑

m Hkmn′m
∑

m Hkmn′

∥
∥
∥
∥ > ε, (1)

The alloying rule states that if Eq. 1 is satisfied for any phase k and neighbouring
sample points n′ and n, then we must have ‖∑

m Hkmn‖0 ≤ 2.

2.1 Previous Approaches

Many algorithms have been proposed for solving the phase mapping problem,
for example [5,8,9]. Recently an efficient algorithm called AgileFD [14], based
on coordinate descent using multiplicative updates, has been proposed. If we let
the matrix R represent the product of H and W , i.e. Rqn =

∑
m Wq−m,kHkmn

these updates are

Hkmn ← Hkmn

∑
q Wq−m,k(Aqn/Rqn)
∑

q Wq−m,k + γ
, (2)

Wqk ← Wqk

∑
mn

Aq+m,n

Rq+m,n
Hkmn + Wqk

∑
q′nm HkmnWq′k

∑

nk

Hkmn + Wqk

∑
q′nm

Aq′+m,n

Rq′+m,n
HkmnWq′k

. (3)

The algorithm relies on manual refinement by domain experts to enforce combi-
natorial constraints, which makes it problematic to use in a scalable fashion.

Another approach called combiFD, able to express all constraints, has been
proposed [2]. It relies on a combinatorial factor decomposition formulation, where
iteratively H or W are frozen while the other is updated by solving a MIP. This
formulation allows all constraints to be expressed upfront, however solving the
complete MIP programs is infeasible in practice.
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3 Interleaved Agile Factor Decomposition

Given a non-negative Q-by-N measurement matrix A and the dimensions K
and M of the factorization, the phase mapping problem entails explaining A as
a generalized product of two low rank non-negative matrices W,H. The entire
mathematical formulation becomes:

min
∑

qn

|Aqn −
∑

mk

Wq−m,kHkmn|, s.t. H ∈ R
K×M×N
+ , W ∈ R

Q×K
+ ,

H,W satisfies Gibbs’ phase rule, Connectivity, Alloying rule. (4)

Representing the combinatorial rules as integer constraints has previously
been tried [2], however the resulting large MIP formulations are not feasible to
solve in practice. Instead, we propose a novel iterative framework that inter-
leaves efficient multiplicative updates with compact subroutines able to address
specific constraints, called Interleaved Agile Factor Decomposition (IAFD). The
algorithm is illustrated, at a high level, in Fig. 1 (Right). The central insight is
that our constraints are too expensive to explicitly encode and maintain, however
finding and rectifying individual violations can be done efficiently. This motivates
a lazy approach that relaxes and postpones non-convex constraint sets (the lazy
constraints), iteratively enforcing them only as violations are detected. For each
constraint we provide an efficient method to detect violations and repair them
through much smaller optimization problems.

The IAFD algorithm starts with solving the relaxed problem, with only the
convex non-negativity constraint, using the multiplicative updating rules (2) and
(3) of AgileFD [14]. This relaxed solution is then slightly refined by three subrou-
tines which sample and rectify violations of Gibbs’ phase rule, the alloying rule,
and the connectivity constraint respectively, by solving small scale optimization
problems. The refined solution is then relaxed again and improved through the
multiplicative updates. This process is repeated in an interleaving manner which
creates a closed loop involving AgileFD and the three refining modules. A reason
why this interleaving can be expected to not produce much duplicate effort is
due to the following observation:

Proposition 1. The number of non-zero entries in H : ‖{(n, k)|∑m Hnkm >
0}‖ is nonincreasing under updates (2) of AgileFD.

This comes from the fact that every component is updated through multi-
plication with itself in (2), which ensures that zero-components stay zero. Thus,
if Gibbs’ phase rule is satisfied before the multiplicative updates, it will still be
satisfied after. We now describe the subroutines handling the constraints.

Gibbs’ Phase Rule Refinement. After obtaining the matrix W and H, we
find violations of Gibbs’ phase rule by scanning sample points and noting which
ones have more than three phases present. One key insight is that the problem of
enforcing Gibbs’ phase rule decouples between sample points once the matrix W
is fixed. In order to represent the constraint that no more than three phases are
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present, we introduce a binary variable δkn denoting whether phase k is present
at sample location n (i.e.,

∑
m Hkmn is nonzero). The constraint is now enforced

by solving the following mixed integer program with W fixed for each violated
sample point, which results in a very light-weight refinement:

min
δ,Hkmn∀k,m

∑

q

|Aqn −
∑

mk

Wq−m,kHkmn|,

s.t. ∀k,m Hkmn ≤ Mδnk,
∑

k

δnk ≤ 3. (5)

Here, Hkmn ≤ Mδnk is a big-M constraint, which enforces that phase k is
zero if δnk is zero. We use

∑
k δnk ≤ 3 to enforce that only three phases are

allowed. These compact programs typically contains two orders of magnitude
fewer variables then the complete program, and can be quickly solved in parallel.

Alloying Rule Refinement. Violations of the alloying rule can be found by
comparing the shift parameter λk of some sample point n, here interpreted
as

∑
m Hkmnm/

∑
m Hkmn, to that of its neighbors in graph G. This simply

amounts to a linear scan through all sample points. It is again possible to decou-
ple the constraint by taking W and n as fixed, which allows for a compact mixed
integer program formulation. We fix the violating sample point n, denote the set
of its neighbors as N(n), and then calculate λkn′ =

∑
m mHkmn′/

∑
m Hkmn′

for all neighbors n′ ∈ N(n) where phase k is present. In the MIP the binary vari-
able δkn is used to denote whether phase k is present at sample point n, another
binary variable τn is then introduced to denote whether the sample point under-
goes shift. By using a large M -constraint as in Gibbs’ phase rule module we can
encode that unless the sample point is shifting or doesn’t contain the phase k,
the λk has to be close to that of it’s neighbors as follows:

min
τ,δ,Hkmn∀k,m

∑

q

|Aqn −
∑

mk

Wq−m,kHkmn|,

s.t. |
∑

m

Hkmnm − λkn′
∑

m

Hkmn| ≤ ε
∑

m

Hkmn + Mτn + M(1 − δkn),

∀k,m, n′ ∈ N(n), Hkmn ≤ Mδnk,
∑

k

δnk + τn ≤ 3. (6)

Connectivity Refinement. While explicitly encoding the constraint is com-
putationally expensive, finding violations can be done in a lightweight manner.
For each phase k we find all continuous regions containing phase k by simply
finding the connected components of our graph G where phase k is present.
To rectify the constraint, every connected component C is then weighted by
the total amount of present phase, which amounts to calculating the quantity∑

n∈C,m Hkmn. This weight corresponds to the amount of present signal. We
then zero out components in H corresponding to phase k and sample points in
the least weighted connected components. This procedure ensures that all the
phases correspond to a single contiguous regions, without deteriorating much (if
at all) the objective function in general.
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Fig. 2. (Left) Normalized L1 Loss of the difference between ground-truth and recon-
structed X-ray patterns for the algorithms on 8 real world systems. IAFD performs best,
with combiFD lagging behind the two other methods. (Right) Runtime for CombiFD,
AgileFD, IAFD to solve 8 real systems, note the logarithmic time scale. We can clearly
see that the heavy duty MIP formulation of combiFD results running times of hours,
while the two lightweight methods runs in a matter of minutes.

4 Experimental Results

IAFD is evaluated on several real world instances of the phase mapping problem,
available at [4]. We randomly initialize the matrices, and as the interleaving
with the connectivity-subroutine and the alloying-subroutine assumes structured
data, the whole algorithm starts with several rounds of AgileFD interleaving with
Gibbs’ rule followed by the other two subroutines. The diffraction patterns are
probed at around 200 locations of the respective wafers with approximately 1700
values of q sampled, we set K = 6 and M = 8 which gives us around two million
variables per problem. More rounds of interleaving lead to better results but of
course it takes more time. We chose to do three rounds of AgileFD interleaving
with Gibbs’ rule followed by enforcing the other two constraints to balance these
tradeoffs. Our method is compared against CombiFD [2], with a mipgap of 0.1
and 15 iterations. Due to its poor scaling properties only the Gibbs’ phase rule
is enforced for CombiFD. We also compare IAFD against AgileFD [14], with
termination constant set to 10−5.

The most important metric when comparing different methods is the solution
quality, measured by L1 loss. Results shown in Fig. 2 (Left). It is evident that
CombiFD in [2] has subpar performance, while IAFD wins by a slight margin
over AgileFD. This suggests that enforcing the constraints actually improves
the reconstruction error. The area where we expect IAFD to perform the best
is in terms of enforcing the physical constraints, which is illustrated in Table 1.
Here IAFD consistently performs the best with zero violations, which results in
physically meaningful solutions to the phase mapping problem.

The smaller subroutines are evidently able to handle all constraints and
additionally provide a low loss, which might lead one to suspect that IAFD
has long run times. That is not the case. The run times can be viewed in Fig. 2
(Right). While AgileFD is slightly faster than IAFD, the difference is very small.
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CombiFD, which explicitly enforces the constraints [2], has prohibitive long run
times in practice, which suggests that a complete MIP encoding is both ineffi-
cient and unnecessary. These results show that IAFD can enforce all physical
rules, without sacrificing much in either reconstruction error or running time.

Table 1. To the left we see the fraction of sample points violating the alloying rule for
different algorithms, where IAFD consistently has no violations. The right side gives
the average number of connected components per phase, and here only IAFD always
contain a single continuous region as required by the connectivity constraint.

System Alloying constraint Connectivity constraint

CombiFD AgileFD IAFD CombiFD AgileFD IAFD

(Fe-Bi-V)Ox(I) 0.57 0.15 0.00 1.00 1.65 1.00

(Fe-Bi-V)Ox(II) 0.55 0.30 0.00 2.40 1.65 1.00

(Fe-Bi-V)Ox(III) 0.18 0.03 0.00 2.50 2.18 1.00

(Zn-Sn-Si)Nx(I) 0.06 0.01 0.00 1.00 2.38 1.00

(Zn-Sn-Si)Nx(II) 0.05 0.02 0.00 2.00 1.38 1.00

(W-Bi-V)Ox 0.54 0.08 0.00 1.67 2.31 1.00

(Ag-Bi-V)Ox 0.84 0.16 0.00 3.60 1.96 1.00

(Mo-Bi-V)Ox 0.46 0.08 0.00 1.60 1.72 1.00

5 Conclusions

We propose a novel Interleaved Agile Factor Decomposition (IAFD) framework
for solving the phase mapping problem, a challenging constrained matrix fac-
torization problem in materials discovery. IAFD is a lightweight iterative app-
roach that lazily enforces non-convex constraints. The algorithm is evaluated on
several real world instances and outperforms previous solvers both in terms of
run time and solution quality. IAFD’s approach, based on efficient multiplicative
updates from unconstrained nonnegative matrix factorization and lazily enforced
constraints, performs much better compared to approaches that enforce all con-
straints upfront, using a large mathematical program. This approach opens up
a new angle for efficiently solving more general constrained factorization prob-
lems. We anticipate deploying IAFD at the Stanford Synchrotron Radiation
Lightsource in the near future to the benefit of the materials science community.
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